Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Time-activity budgets and space structuring by the different life stages of Varroa jacobsoni in capped brood of the honey bee, Apis mellifera
    (1997)
    Donzé, Gérard
    ;
    Varroa jacobsoni reproduces in honey bee brood cells. Here the behavioral activity and use of space by infestingVarroa females and progeny were quantified in transparent artificial brood cells. The time-activity budget of both infesting and developing mites converged toward a stable pattern which was established during the bee prepupal stage of the infesting mites and the protonymphal stage of mite progeny. The pattern was such that infesting females and offspring eventually divided their activity between the fecal accumulation on the cell wall, which served as the rendezvous site for newly molted individuals, and the feeding site prepared on the pupa by the foundress. Other parts of the cell wall were used for oviposition and molting, away from the fecal accumulation on which activity of mobile stages was concentrated. Space structuring and the time-activity budget in Varroa probably evolved to enhance the number of fertilized females produced within the capped brood, where space and time are limiting factors. These behavioral adaptations parallel those of other mite species which show group behavior within cavities.
  • Publication
    Accès libre
    Behavioral attributes and parental care of Varroa mites parasitizing honeybee brood
    (1994)
    Donzé, Gérard
    ;
    Varroa jacobsoni, an ectoparasite of the Asian honeybee Apis cerana, has been introduced world-wide, and is currently decimating colonies of the European honeybee Apis mellifera. Varroa's reproductive cycle is tuned to that of drone cells, those mainly parasitized in the original host. We describe here how a single fertilized female, infesting a brood cell, can produce two to four adult fertilized females within the limited time span of bee development (270 h in worker and 320 h in drone cells), despite the disturbance caused by cocoon spinning and subsequent morphological changes of the bee. From observations on transparent artificial cells we were able to show how the mite combats these problems with specialized behaviors that avoid destruction by the developing bee, prepares a feeding site for the nymphs on the bee pupa, and constructs a fecal accumulation on the cell wall which serves as a rendezvous site for matings between its offspring. The proximity of the fecal accumulation to the feeding site facilitates feeding by the maturing progeny. However, communal use of the feeding site leads to competition between individuals, and protonymphs are most disadvantaged. This competition is somewhat compensated by the timing of oviposition by the mites. Use of a common rendezvous and feeding site by two or more Varroa mothers in multiinfested cells may have developed from the parental care afforded to them as nymphs.