Voici les éléments 1 - 2 sur 2
  • Publication
    Métadonnées seulement
    An in Vitro Assay for Testing Mosquito Repellents Employing a Warm Body and Carbon Dioxide as a Behavioral Activator
    We describe here an in vitro behavioral assay for testing mosquito repellents applied in a dose-based manner to a warm body (34 C) in test cages. The system was used to assess the sensitivity of 4-6-day-old Anopheles gambiae to the insect repellent diethyl methyl benzamide (deet). These tests were made in the absence and presence of additional carbon dioxide (CO(2)) applied as a pulse to activate mosquitoes in the cages. In the absence of the CO(2) pulse the mosquitoes hardly responded to the warm body. Increasing the CO(2) level in the cage by 1,000 parts per million caused a 25-fold increase in the number of landings by mosquitoes on the warm body in 2-min tests. This mosquito activation allowed the measurement of a significant reduction in the number of landings to bite on the warm body with increasing doses of deet (0.4 to 3.8 mu g/cm(2)). An asymptotic nonlinear model fitted to the repellency data in the presence of CO(2) allowed estimation of the effective dose of deet that reduced landings to bite by 50% (ED(50)) at 0.95 mu g/cm(2) (5 nmol/cm(2)) and the corresponding ED(95) at 4.12 mu g/cm(2) (21.5 nmol/cm(2)). This in vitro bioassay has the advantage of permitting a fast throughput of test products under standardized conditions and is suitable for screenings designed for the purpose of discovering lead products with as yet unknown human toxicological and dermatological profiles.
  • Publication
    Métadonnées seulement
    In vitro assays for repellents and deterrents for ticks: differing effects of products when tested with attractant or arrestment stimuli
    (2003)
    McMahon, Conor
    ;
    ;
    Most in vivo and in vitro tests with repellents or deterrents against ticks have not considered which sensory channel is being targeted. We have recorded the responses of two hard tick species (Acari: Ixodidae) in vitro to determine if such products can disrupt the perception of an attractant in a repellent assay or the perception of an arrestment stimulus in a deterrent assay. Ethyl butylacetylaminopropionate (EBAAP), N,N-diethyl-methyl-benzamide (deet), permethrin and indalone were chosen to test their capacity to inhibit the attraction of Amblyomma variegatum Fabricius to its aggregation-attachment pheromone. Vapours of each test product plus those from a synthetic blend of the pheromone were delivered to the walking tick in an air stream on a locomotion compensator. Neither EBAAP, deet, permethrin nor indalone could inhibit attraction of A. variegatum even when each of the test products was delivered at 10(6) times the pheromone. Indalone did decrease the attraction of A. variegatum to the pheromone and induced repulsion of A. variegatum when presented on its own in the air stream. The effect of permethrin, a sodium channel blocker, was also tested in a deterrent assay measuring the arrestment of Ixodes ricinus (L.) adults on its own faeces and faecal constituents. Permethrin deterred arrestment at doses of 670 fg/cm(2) to 67 ng/cm(2), i.e. at levels five times lower than the dose of chemostimuli present in the arrestment stimulus. This sensitivity to permethrin suggests that it acts via the contact chemoreception channel.