Options
Therrien, Bruno
Résultat de la recherche
Ru2(CO)4{OOC(CH2)nCH3}2L2 sawhorse-type complexes containing μ2-η2-carboxylato ligands derived from saturated fatty acids
2011, Johnpeter, J. P., Therrien, Bruno
The thermal reaction of Ru3(CO)12 with the saturated fatty acids (heptanoic, nonanoic, decanoic, tridecanoic, tetradecanoic, heptadecanoic, octadecanoic) in refluxing tetrahydrofuran, followed by addition of triphenylphosphine (PPh3) or pyridine (C5H5N), gives the dinuclear complexes Ru2(CO)4{OOC(CH2)nCH3}2L2 (1: n = 5, 2: n = 7, 3: n = 8, 4: n = 11, 5: n = 12, 6: n = 15, 7: n = 16; a: L = NC5H5, b: L = PPh3). The single crystal structure analysis of 1b, 2a, 3a, 4a and 5a reveals a dinuclear Ru2(CO)4 sawhorse structure, the diruthenium backbone being bridged by the carboxylato ligands, while the two L ligands occupy the axial positions at the ruthenium atoms. In 2a, π-π stacking interactions between adjacent pyridyl units of symmetry related molecules prevail, while in the longer alkyl chain derivatives 3a, 4a and 5a, additional van der Waals and electrostatic interactions between the alkyl chains take place as well in the packing arrangement of the molecules, thus giving rise to layers of parallel alkyl chains in the crystal.
Mono and dinuclear arene ruthenium complexes containing 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline as chelating ligand: Synthesis and molecular structure
2007, Therrien, Bruno, Süss-Fink, Georg, Govindaswamy, Padavattan, Saïd-Mohamed, Cynthia
The mononuclear cations of the general formula [(η6-arene)RuCl(dpqMe2)]+ (dpqMe2 = 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline; arene = C6H6, 1; C6H5Me, 2; p-PriC6H4Me, 3; C6Me6, 4) as well as the dinuclear dications [(η6-arene) 2Ru2Cl2(μ-dpqMe2)]2+ (arene = C6H6, 5; C6H5Me, 6; p-PriC6H4Me, 7; C6Me6, 8) have been synthesised from 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline (dpqMe2) and the corresponding chloro complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-C6H5Me)Ru(μ-Cl)Cl]2, [(η6-p-PriC6H4Me)Ru(μ-Cl)Cl]2 and [(η6-C6Me6)Ru(μ-Cl)Cl]2, respectively. The X-ray crystal structure analyses of [1][PF6], [3][PF6] and [6][PF6]2 reveal a typical piano-stool geometry around the metal centre; in the dinuclear complexes the two chloro ligands, with respect to each other, are found to be trans oriented.
Ru2(CO)4(OOCR)2(PPh3)2 sawhorse-type complexes containing μ2-η2-carboxylato ligands derived from biologically active acids
2006, Auzias, Mathieu, Therrien, Bruno, Süss-Fink, Georg
The thermal reaction of Ru3(CO)12 with the biologically active acids acetyl salicylic acid (Aspirin), α-methyl-4-(isobutyl)phenylacetic acid (Ibuprofen) and 3α,7α,12α-trihydroxy-5β-cholanic acid (cholic acid) in refluxing tetrahydrofuran, followed by addition of triphenylphosphine, gives the dinuclear complexes Ru2 (CO) 4(OOCR)2(PPh3)2 (1: R = C6H4-2-OCOMe, 2: R = CHMe-C6H4-4-Bui, 3: C23H39O3). The single-crystal structural analysis of 1 and 2 reveals a dinuclear Ru2(CO)4 sawhorse structure, the diruthenium backbone being bridged by the carboxylato ligands, while the two phosphine ligands occupy the axial positions at the ruthenium atoms. However, chiral carbon atoms in the carboxylic acid undergo racemisation during the thermal reaction.
Excellent Correlation between Drug Release and Portal Size in Metalla-Cage Drug-Delivery Systems
2011, Barry, Nicolas P.E., Zava, Olivier, Dyson, Paul J., Therrien, Bruno
A series of large cationic hexanuclear metalla-prisms, [Ru6(p-iPrC6H4Me)6(tpt)2(donq)3]6+, [Ru6(p-iPrC6H4Me)6(tpt)2(doaq)3]6+ and [Ru6(p-iPrC6H4Me)6(tpt)2(dotq)3]6+, composed of p-cymene–ruthenium building blocks bridged by OO∩OO ligands (donq=5,8-dioxido-1,4-naphthoquinonato; doaq=5,8-dioxido-1,4-anthraquinonato, dotq=6,11-dioxido-5,12-naphthacenedionato) and connected by two 2,4,6-tripyridin-4-yl-1,3,5-triazine (tpt) panels, which encapsulate the guest molecules 1-(4,6-dichloro-1,3,5-triazin-2-yl)pyrene and Pd(acac)2, have been prepared. The host–guest properties of these water-soluble delivery systems were studied in solution by NMR and fluorescence spectroscopy, providing the stability constants (K) for these host–guest systems. Moreover, the ability of the hosts to deliver the guests into cancer cells was evaluated and the uptake mechanism studied; the rate of release of the guest molecule was found to depend on the portal size of the host.
Organometallic boxes built from 5,10,15,20-tetra(4-pyridyl)porphyrin panels and hydroxyquinonato-bridged diruthenium clips
2008, Barry, Nicolas P.E., Govindaswamy, Padavattan, Furrer, Julien, Süss-Fink, Georg, Therrien, Bruno
Self-assembly of 5,10,15,20-tetra(4-pyridyl)porphyrin (tpp-H2) tetradentate panels with dinuclear arene ruthenium clips [Ru2 (η6-arene)2 (dhbq)Cl2] (arene = C6H5Me, p-PriC6H4Me, C6Me6; dhbq = 2,5-dihydroxy-1,4-benzoquinonato) affords the cationic organometallic boxes [Ru8 (η6-C6H5Me)8 (tpp-H2)2 (dhbq)4]8+ ([1]8+), [Ru8 (η6-p-PriC6H4Me)8 (tpp-H2)2(dhbq)4]8+ ([2]8+) and [Ru8 (η6-C6Me6)8 (tpp-H2)2 (dhbq)4]8+ ([3]8+). These octanuclear cations have been isolated as their triflate salts and characterised by mass spectrometry, NMR and IR spectroscopy. The molecular structure of these systems was deduced by one-dimensional and two-dimensional NMR experiments (ROESY, COSY, HSQC).
Mononuclear arene ruthenium complexes containing 5,6-diphenyl-3-(pyridine-2-yl)-1,2,4-triazine as chelating ligand: Synthesis and molecular structure
2007, Therrien, Bruno, Saïd-Mohamed, Cynthia, Süss-Fink, Georg
The mononuclear cations of the general formula [(η6-arene)RuCl(pdpt)]+ (pdpt = 5,6-diphenyl-3-(pyridine-2-yl)-1,2,4-triazine; arene = C6H6 (1); C6H5Me (2); p-PriC6H4Me (3); C6Me6 (4)) have been synthesised from 5,6-diphenyl-3-(pyridine-2-yl)-1,2,4-triazine (pdpt) and the corresponding chloro complexes [(η6-C6H6)Ru(μ-Cl)Cl] 2, [(η6-C6H5Me)Ru(μ-Cl)Cl]2, [(η6p-PriC6H4Me)Ru(μ-Cl)Cl]2 and [(η6-C6Me6)Ru(μ-Cl)Cl]2, respectively. The X-ray crystal structure analyses of [1][PF6] • (C6H6)2.5 and [2][PF6] • (CH3CN)2 reveal a typical piano-stool geometry around the metal centre and in the crystal packing a complexed networks of intermolecular interactions.
Remarkable Anticancer Activity of Triruthenium-Arene Clusters Compared to Tetraruthenium-Arene Clusters
2007, Therrien, Bruno, Ang, Wee Han, Chérioux, Frédéric, Vieille-Petit, Ludovic, Juillerat-Jeanneret, Lucienne, Süss-Fink, Georg, Dyson, Paul J.
The in vitro activity of a series of ruthenium clusters, [(η6-C6H6)(η6-C6Me6)2Ru3 (μ-H)3 (μ3-O)][BF4], [(η6-C6H6)(η6-1,4-iPrC6H4Me)(η6-C6Me6)Ru3 (μ-H)3 (μ3-O)][BF4], [(η6-C6H6)4Ru4 (μ-H)4][BF4]2, [(η6-C6H5Me)4Ru4 (μ-H)4][BF4]2 and [(η6-C6H6)4Ru4 (μ-H)3 (μ-OH)][Cl]2, has been evaluated against A2780 and A2780cisR ovarian carcinoma cell lines. Both triruthenium clusters are very active compared to ruthenium compounds in general, whereas the tetraruthenium clusters do not display significant cytotoxicities. Since the triruthenium clusters are known to form supramolecular interactions with arenes and other functions, it is possible that such interactions are also important with respect to their mode of biological activity. The X-ray structure analysis of [(η6-C6H5Me)4Ru4 (μ-H)4][PF6]2 is also reported.
New mono and dinuclear arene ruthenium chloro complexes containing ester substituents
2006, Therrien, Bruno, Süss-Fink, Georg
The dinuclear arene ruthenium complexes [RuCl2{C6H5(CH2)3OCO-p-C6H4-OC8H17}]2 (1) and [RuCl2{p-C6H4(CH2COOCH2CH3)2}]2 (2) have been obtained by dehydrogenation of the corresponding cyclohexadiene derivative with ruthenium chloride hydrate. The single-crystal X-ray structure analysis of 2 shows the arene ligands to be involved in slipped-parallel π–π stacking interactions with neighbouring molecules, thus forming infinite chains along the b-axis. The dinuclear complexes 1 and 2 react with two equivalents of triphenylphosphine (PPh3) to give in excellent yield the corresponding mononuclear phosphine complexes [RuCl2{C6H5(CH2)3OCO-p-C6H4-OC8H17}(PPh3)] (3) and [RuCl2{p-C6H4(CH2COOCH2CH3)2}(PPh3)] (4), respectively. The single-crystal X-ray structure analysis of 4 reveals the formation of a dimer through two C–HCl interactions in the solid state.