Options
Tillé, Yves
Nom
Tillé, Yves
Affiliation principale
Site web
Fonction
Professeur ordinaire
Email
yves.tille@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 7 sur 7
- PublicationAccès libreLinearization and Variance Estimation of the Bonferroni Inequality Index(Neuchâtel Institut de Statistique Faculté des sciences, 2021)
; ; ;Giorgi, Giovanni M.Guandalini, AlessioThe study of income inequality is important for predicting the wealth of a country. There is an increasing number of publications where the authors call for the use of several indices simultaneously to better account for the wealth distribution. Due to the fact that income data are usually collected through sample surveys, the sampling properties of income inequality measures should not be overlooked. The most widely used inequality measure is the Gini index, and its inferential aspects have been deeply investigated. An alternative inequality index could be the Bonferroni inequality index, although less attention on its inference has been paid in the literature. The aim of this paper is to address the inference of the Bonferroni index in a finite population framework. The Bonferroni index is linearized by differentiation with respect to the sample indicators which allows for conducting a valid inference. Furthermore, the linearized variables are used to evaluate the effects of the different observations on the Bonferroni and Gini indices. The result demonstrates once for all that the former is more sensitive to the lowest incomes in the distribution than the latter. - PublicationMétadonnées seulementVariance estimation of the Gini index: Revisiting a result several times published(2013)
; Since Corrado Gini suggested the index that bears his name as a way of measuring inequality, the computation of variance of the Gini index has been subject to numerous publications. In this paper, we survey a large part of the literature related to the topic and show that the same results, as well as the same errors, have been republished several times, often with a clear lack of reference to previous work. Whereas existing literature on the subject is very fragmented, we regroup papers from various fields and attempt to bring a wider view of the problem. Moreover, we try to explain how this situation occurred and the main issues involved when trying to perform inference on the Gini index, especially under complex sampling designs. The interest of several linearization methods is discussed and the contribution of recent papers is evaluated. Also, a general result to linearize a quadratic form is given, allowing the approximation of variance to be computed in only a few lines of calculation. Finally, the relevance of the regression-based approach is evaluated and an empirical comparison is proposed. - PublicationAccès libreInference by linearization for Zenga’s new inequality index: a comparison with the Gini index(2012-9-17)
; Zenga’s new inequality curve and index are two recent tools for measuring inequality. Proposed in 2007, they should thus not be mistaken for anterior measures suggested by the same author. This paper focuses on the new measures only, which are hereafter referred to simply as the Zenga curve and Zenga index. The Zenga curve Z (alpha) involves the ratio of the mean income of the 100 alpha% poorest to that of the 100(1-alpha)% richest. The Zenga index can also be expressed by means of the Lorenz Curve and some of its properties make it an interesting alternative to the Gini index. Like most other inequality measures, inference on the Zenga index is not straightforward. Some research on its properties and on estimation has already been conducted but inference in the sampling framework is still needed. In this paper, we propose an estimator and variance estimator for the Zenga index when estimated from a complex sampling design. The proposed variance estimator is based on linearization techniques and more specifically on the direct approach presented by Demnati and Rao. The quality of the resulting estimators are evaluated in Monte Carlo simulation studies on real sets of income data. Finally, the advantages of the Zenga index relative to the Gini index are discussed. - PublicationAccès libreInference by linearization for Zenga’s new inequality index: a comparison with the Gini index(2012)
; Zenga’s new inequality curve and index are two recent tools for measuring inequality. Proposed in 2007, they should thus not be mistaken for anterior measures suggested by the same author. This paper focuses on the new measures only, which are hereafter referred to simply as the Zenga curve and Zenga index. The Zenga curve Z(α) involves the ratio of the mean income of the 100 α %poorest to that of the 100 (1-α)% richest. The Zenga index can also be expressed by means of the Lorenz Curve and some of its properties make it an interesting alternative to the Gini index. Like most other inequality measures, inference on the Zenga index is not straightforward. Some research on its properties and on estimation has already been conducted but inference in the sampling framework is still needed. In this paper, we propose an estimator and variance estimator for the Zenga index when estimated from a complex sampling design. The proposed variance estimator is based on linearization techniques and more specifically on the direct approach presented by Demnati and Rao. The quality of the resulting estimators are evaluated in Monte Carlo simulation studies on real sets of income data. Finally, the advantages of the Zenga index relative to the Gini index are discussed. - PublicationAccès libreCorrado Gini, a pioneer in balanced sampling and inequality theory(2011-3-14)
; This paper attempts to make the link between two of Corrado Gini’s contributions to statistics: the famous inequality measure that bears his name and his work in the early days of balanced sampling. Some important notions of the history of sampling such as representativeness, randomness, and purposive selection are clarified before balanced sampling is introduced. The Gini index is described, as well as its estimation and variance estimation in the sampling framework. Finally, theoretical grounds and some simulations on real data show how some well used auxiliary information and balanced sampling can enhance the accuracy of the estimation of the Gini index. - PublicationAccès libreCorrado Gini, a pioneer in balanced sampling and inequality theoryThis paper attempts to make the link between two of Corrado Gini’s contributions to statistics: the famous inequality measure that bears his name and his work in the early days of balanced sampling. Some important notions of the history of sampling such as representativeness, randomness, and purposive selection are clarified before balanced sampling is introduced. The Gini index is described, as well as its estimation and variance estimation in the sampling framework. Finally, theoretical grounds and some simulations on real data show how some well used auxiliary information and balanced sampling can enhance the accuracy of the estimation of the Gini index.
- PublicationAccès libreVariance estimation of the Gini index: revisiting a result several times publishedSince Corrado Gini suggested the index that bears his name as a way of measuring inequality, the computation of variance of the Gini index has been subject to numerous publications. We survey a large part of the literature related to the topic and show that the same results, as well as the same errors, have been republished several times, often with a clear lack of reference to previous work. Whereas existing literature on the subject is very fragmented, we regroup references from various fields and attempt to bring a wider view of the problem. Moreover, we try to explain how this situation occurred and the main issues that are involved when trying to perform inference on the Gini index, especially under complex sampling designs. The interest of several linearization methods is discussed and the contribution of recent references is evaluated. Also, a general result to linearize a quadratic form is given, allowing the approximation of variance to be computed in only a few lines of calculation. Finally, the relevance of the regression-based approach is evaluated and an empirical comparison is proposed.