Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Linearization and Variance Estimation of the Bonferroni Inequality Index
    (Neuchâtel Institut de Statistique Faculté des sciences, 2021) ; ;
    Giorgi, Giovanni M.
    ;
    Guandalini, Alessio
    The study of income inequality is important for predicting the wealth of a country. There is an increasing number of publications where the authors call for the use of several indices simultaneously to better account for the wealth distribution. Due to the fact that income data are usually collected through sample surveys, the sampling properties of income inequality measures should not be overlooked. The most widely used inequality measure is the Gini index, and its inferential aspects have been deeply investigated. An alternative inequality index could be the Bonferroni inequality index, although less attention on its inference has been paid in the literature. The aim of this paper is to address the inference of the Bonferroni index in a finite population framework. The Bonferroni index is linearized by differentiation with respect to the sample indicators which allows for conducting a valid inference. Furthermore, the linearized variables are used to evaluate the effects of the different observations on the Bonferroni and Gini indices. The result demonstrates once for all that the former is more sensitive to the lowest incomes in the distribution than the latter.
  • Publication
    Accès libre
    Inference by linearization for Zenga’s new inequality index: a comparison with the Gini index
    Zenga’s new inequality curve and index are two recent tools for measuring inequality. Proposed in 2007, they should thus not be mistaken for anterior measures suggested by the same author. This paper focuses on the new measures only, which are hereafter referred to simply as the Zenga curve and Zenga index. The Zenga curve Z (alpha) involves the ratio of the mean income of the 100 alpha% poorest to that of the 100(1-alpha)% richest. The Zenga index can also be expressed by means of the Lorenz Curve and some of its properties make it an interesting alternative to the Gini index. Like most other inequality measures, inference on the Zenga index is not straightforward. Some research on its properties and on estimation has already been conducted but inference in the sampling framework is still needed. In this paper, we propose an estimator and variance estimator for the Zenga index when estimated from a complex sampling design. The proposed variance estimator is based on linearization techniques and more specifically on the direct approach presented by Demnati and Rao. The quality of the resulting estimators are evaluated in Monte Carlo simulation studies on real sets of income data. Finally, the advantages of the Zenga index relative to the Gini index are discussed.