Options
Ciobanu, Laura
Résultat de la recherche
Conjugacy growth series of groups
2017, Mercier, Valentin, Ciobanu, Laura
Dans cette thèse nous étudions les séries de croissance de conjugaison de plusieurs groupes construits à partir d'autres groupes, en fonction des séries de croissance standard et de conjugaison des groupes de base, pour un système générateur spécifique. Ceci inclut (1) les groupes de la forme $G\wr L$ quand $L$ admet un graphe de Cayley qui est un arbre (2) les produits graphés (3) un produit libre particulier de la forme $\mathbb{Z}*\mathbb{Z}$ avec amalgamation sur $\mathbb{Z}$, et (4) des extensions HNN de produits graphés sur des sous-produits graphés isomorphes. Pour tous ces groupes mentionnés, on prouve que le rayon de convergence de la série de croissance de conjugaison est le même que celui de la série de croissance standard. Nous donnons une formule explicite pour la série de croissance de conjugaison des groupes $G\wr \mathbb{Z}$, $G\wr(C_2*C_2)$, de produits graphés, d'un produit libre particulier de la forme $\mathbb{Z}*\mathbb{Z}$ avec amalgamation sur $\mathbb{Z}$, d'extensions HNN de produits graphés sur des sous produits graphés isomorphes basés sur de sous-graphes disjoints, et pour une extension HNN de la forme $H*H$ sur lui-même en intervertissant les facteurs de groupes. Nous prouvons aussi à la fin de ce document que pour deux cardinaux infinis $\kappa_1$ et $\kappa_2$ avec $\kappa_1<\kappa_2$, il existe un groupe de cardinalité $\kappa_2$, avec $\kappa_1$ pour la cardinalité de son ensemble de classes de conjugaison., In this thesis we study the conjugacy growth series of several group constructions in terms of the standard and the conjugacy growth series of the building groups, with a specific generating set. This includes (1) groups of the form $G\wr L$ when $L$ admits a Cayley graph that is a tree, (2) graph products, (3) a specific free product of $\mathbb{Z}*\mathbb{Z}$ with amalgamation over $\mathbb{Z}$, and (4) some HNN-extensions of graph products over isomorphic subgraph products. For all the groups mentioned we prove that the radius of convergence of the conjugacy growth series is the same as the radius of convergence of the standard growth series. We give an explicit formula for the conjugacy growth series of the groups $G\wr \mathbb{Z}$, $G\wr (C_2*C_2)$, of the graph products, of a specific free product of $\mathbb{Z}*\mathbb{Z}$ with amalgamation over $\mathbb{Z}$, of the HNN-extension of graph products over isomorphic subgraph products based on disjoint subgraphs, and for an HNN-extension of a group of the form $H*H$ over itself by swapping the factor groups. We also prove at the end that for two infinite cardinals $\kappa_1$ and $\kappa_2$ with $\kappa_1<\kappa_2$, there exists a group of cardinality $\kappa_2$, with $\kappa_1$ for the cardinality of its set of conjugacy classes.
Finite generating sets of relatively hyperbolic groups and applications to geodesic languages
2014, Antolin, Yago, Ciobanu, Laura
Geodesic growth in right-angled and even Coxeter groups
2013, Antolin, Yago, Ciobanu, Laura
Rapid decay and Baum-Connes for large type Artin groups
2012, Ciobanu, Laura, Holt, Derek F., Rees, Sarah
Conjugacy growth series and languages in groups
2014, Ciobanu, Laura, Hermiller, Susan
Permutation closures of context-free and indexed languages
2014, Brough, Tara, Ciobanu, Laura, Elder, Murray
The Surface Group Conjecture: Cyclically Pinched and Conjugacy Pinched One-Relator Groups
2013, Ciobanu, Laura, Fine, Ben, Rosenberger, Gerhard
Conjugacy languages in groups
2014, Ciobanu, Laura, Hermiller, Susan, Holt, Derek, Rees, Sarah
Sofic groups: graph products and graphs of groups
2013, Ciobanu, Laura, Holt, Derek F., Rees, Sarah
Rapid decay is preserved by graph products
2013, Ciobanu, Laura, Holt, Derek F., Rees, Sarah