Options
Joyet, Alain
Nom
Joyet, Alain
Affiliation principale
Fonction
Post-doctorant
Identifiants
Résultat de la recherche
Voici les éléments 1 - 5 sur 5
- PublicationMétadonnées seulementCONTINUOUS FOUNTAIN CS STANDARD: STABILITY AND ACCURACY ISSUESWe describe a primary fountain frequency standard operating with a continuous beam of laser-cooled Cs atoms. In such a device, aliasing effects, which may degrade the short-term stability in pulsed fountains, are removed and atomic-noise limited stability can be achieved with a state-of-the art, but commercially available, local oscillator. The present experimental short-term stability is measured to be 2.5 · 10-13τ-1/2. Another feature of the continuous fountain is the reduced atomic density and higher beam temperature which reduces the collisional shift of the atomic frequency below the 10-15 level. The light-shift is an undesirable characteristic of the continuous operation. Without a light-trap, a light-shift of the order of 10-12 has been measured. The shift is stable enough not to affect the frequency stability to 104 seconds (2.5 · 10-15). A rotating light-trap has been constructed and tested to bring the light-shift and the corresponding uncertainty to a negligible level. Various contributions to the accuracy are studied.
- PublicationAccès libreTheoretical study of the Dick effect in a continuously operated Ramsey resonator(2001)
; ; ;Dudle, GregorIt is well established that passive frequency standards operated in pulsed mode may suffer a degradation of their frequency stability due to the frequency (FM) noise of the Local Oscillator (LO). In continuously operated frequency standards, it has been shown that a similar degradation of the frequency stability may arise, depending on the used modulation-demodulation scheme. In this paper, we report a theoretical analysis on the possible degradations of the frequency stability of a continuous fountain due to the LO FM noise. A simple model is developed to evaluate whether or not aliasing persists. This model is based on a continuous frequency control loop of a frequency standard using a Ramsey resonator. From this model, we derive a general formula, valid for all usual modulation-demodulation schemes, for the LO frequency fluctuations due to aliasing in closed loop operation. We demonstrate that in an ideal situation and for all usual modulation waveforms, no aliasing occurs if the half-period of modulation equals the transit time of atoms in the Ramsey resonator. We also deduce that in the same conditions, square-wave phase modulation provides the strongest cancellation of the LO instabilities in closed loop operation. Finally, we show that the “Dick formula” for the specific case of the pulsed fountain can be recovered from the model by a sampling operation. - PublicationAccès libreFirst results with a cold cesium continuous fountain resonator(2001)
;Dudle, Gregor; ;Berthoud, Patrick; We report on the design, construction, and preliminary measurements on the resonator of a continuous Cs fountain frequency standard. The construction of the resonator is described, preliminary measurements of the available atomic flux, and of the beam temperature are presented, along with the first Ramsey fringes (width ≃1 Hz) obtained in this new type of fountain. We discuss theoretical aspects of the interrogation scheme with a special view on how aliasing or intermodulation effects are suppressed in a continuous fountain. - PublicationAccès libreAn alternative cold cesium frequency standard: the continuous fountain(2000)
;Dudle, G.; ; ;Fretel, Emmanuel ;Berthoud, P.We report on the primary frequency standard now under construction at the Observatoire de Neuchatel (ON). The design is based on a continuous fountain of laser-cooled cesium atoms, which combines two advantages: the negligible contribution of collisions to the inaccuracy and the absence of stability degradation caused by aliasing effects encountered in pulsed operation. The design is reviewed with special emphasis on the specific features of a continuous fountain, namely the source, the microwave cavity (TE021 mode), and the microwave modulation scheme. The possible sources of frequency biases and their expected contributions to the error budget are discussed. Based on present data, an accuracy in the low 10-15 range and a short-term stability of 7•10-14 are attainable simultaneously under the same operating conditions. - PublicationMétadonnées seulementAn alternative cold cesium frequency standard: The continuous fountain(: Ieee-Inst Electrical Electronics Engineers Inc, 1999)
;Dudle, Gregor; ; ;Fretel, Emmanuel ;Berthoud, PatrickWe report on the primary frequency standard now under construction at the Observatoire de Neuchatel (ON). The design is based on a continuous fountain of laser-cooled cesium atoms, which combines two advantages: the negligible contribution of collisions to the inaccuracy and the absence of stability degradation caused by aliasing effects encountered in pulsed operation. The design is reviewed with special emphasis on the specific features of a continuous fountain, namely the source, the microwave cavity (TE021 mode), and the microwave modulation scheme, The possible sources of frequency biases and their expected contributions to the error budget are discussed. Based on present data, an accuracy in the low 10(-15) range and a short-term stability of 7 . 10(-14) are attainable simultaneously under the same operating conditions.