Voici les éléments 1 - 4 sur 4
Pas de vignette d'image disponible
Publication
Métadonnées seulement

Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots

2013, Marti, Guillaume, Erb, Matthias, Boccard, J., Glauser, Gaëtan, Doyen, G. R., Villard, Neil, Robert, Christelle Aurélie Maud, Turlings, Ted, Rudaz, S., Wolfender, Jean-Luc

Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra-high-pressure liquid chromatography time-of-flight mass spectrometry (UHPLC-TOF-MS)-based metabolomics approach to evaluate local and systemic herbivore-induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty-two differentially regulated compounds were identified from Spodoptera littoralis-infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano-infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3-benzoxazin-4-ones, phospholipids, N-hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3-benzoxazin-4-ones increased in the vascular sap and root exudates. The role of N-hydroxycinnamoyltyramines in plantherbivore interactions is unknown, and we therefore tested the effect of the dominating p-coumaroyltyramine on S. littoralis. Unexpectedly, p-coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

A specialist root herbivore exploits defensive metabolites to locate nutritious tissues

2012, Robert, Christelle Aurélie Maud, Veyrat, Nathalie, Glauser, Gaëtan, Marti, Guillaume, Doyen, G. R., Villard, Neil, Gaillard, Mickaël David Philippe, Köllner, Tobias G., Giron, David, Body, Mélanie, Babst, Benjamin A., Ferrieri, Richard A., Turlings, Ted, Erb, Matthias

The most valuable organs of plants are often particularly rich in essential elements, but also very well defended. This creates a dilemma for herbivores that need to maximise energy intake while minimising intoxication. We investigated how the specialist root herbivore Diabrotica virgifera solves this conundrum when feeding on wild and cultivated maize plants. We found that crown roots of maize seedlings were vital for plant development and, in accordance, were rich in nutritious primary metabolites and contained higher amounts of the insecticidal 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and the phenolic compound chlorogenic acid. The generalist herbivores Diabrotica balteata and Spodoptera littoralis were deterred from feeding on crown roots, whereas the specialist D. virgifera preferred and grew best on these tissues. Using a 1,4-benzoxazin-3-one-deficient maize mutant, we found that D. virgifera is resistant to DIMBOA and other 1,4-benzoxazin-3-ones and that it even hijacks these compounds to optimally forage for nutritious roots.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack

2013, Christensen, S. A., Nemchenko, A., Borrego, E., Murray, I., Sobhy, I. S., Bosak, L., DeBlasio, S., Erb, Matthias, Robert, Christelle Aurélie Maud, Vaughn, K. A., Herrfurth, C., Tumlinson, James, Feussner, I., Jackson, D., Turlings, Ted, Engelberth, J., Nansen, C., Meeley, R., Kolomiets, M. V.

Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, major regulatory genes and the signals that modulate these defense metabolites are vastly understudied, especially in important agro-economic monocot species. Here we show that products and signals derived from a single Zea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbivory. We provide genetic evidence that two 13-LOXs, ZmLOX10 and ZmLOX8, specialize in providing substrate for the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the specialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indicating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression of JA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10-derived signaling is required for LOX8-mediated JA. The possible role of GLVs in JA signaling is supported by their ability to partially restore wound-induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produce GLVs and JA led to dramatic reductions in herbivore-induced plant volatiles (HIPVs) and attractiveness to parasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic link to the diurnal regulation of GLVs and HIPVs. GLV-, JA- and HIPV-deficient lox10 mutants display compromised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence that LOX10-dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene to agro-ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in a density-dependent manner

2012, Robert, Christelle Aurélie Maud, Erb, Matthias, Hibbard, Bruce Elliott, French, B. W., Zwahlen, Claudia, Turlings, Ted

1. Leaf-herbivore attack often triggers induced resistance in plants. However, certain specialist herbivores can also take advantage of the induced metabolic changes. In some cases, they even manipulate plant resistance, leading to a phenomenon called induced susceptibility. Compared to above-ground plant-insect interactions, little is known about the prevalence and consequences of induced responses below-ground. 2. A recent study suggested that feeding by the specialist root herbivore Diabrotica virgifera virgifera makes maize roots more susceptible to conspecifics. To better understand this phenomenon, we conducted a series of experiments to study the behavioural responses and elucidate the underlying biochemical mechanisms. 3. We found that D. virgifera benefitted from feeding on a root system in groups of intermediate size (39 larvae/plant in the laboratory), whereas its performance was reduced in large groups (12 larvae/plant). Interestingly, the herbivore was able to select host plants with a suitable density of conspecifics by using the induced plant volatile (E)-beta-caryophyllene in a dose-dependent manner. Using a split root experiment, we show that the plant-induced susceptibility is systemic and, therefore, plant mediated. Chemical analyses on plant resource reallocation and defences upon herbivory showed that the systemic induced-susceptibility is likely to stem from a combination of (i) increased free amino acid concentrations and (ii) relaxation of defence inducibility. 4. These findings show that herbivores can use induced plant volatiles in a density-dependent manner to aggregate on a host plant and change its metabolism to their own benefit. Our study furthermore helps to explain the remarkable ecological success of D. virgifera in maize fields around the world.