Voici les éléments 1 - 9 sur 9
Vignette d'image
Publication
Accès libre

Experimental Growth Conditions affect Direct and Indirect Defences in two Cotton Species

2023, Laura Chappuis, Alicia Egger, Röder, Gregory, Glauser, Gaëtan, Geoffrey Jaffuel, Betty Benrey, Luis Abdala-Roberts, Mary V. Clancy, Turlings, Ted, Bustos Segura, Carlos

Cotton has been used as a model plant to study direct and indirect plant defence against herbivorous insects. However, the plant growing conditions could have an important effect on the outcome of such plant defence studies. We examined how common experimental growth conditions influence constitutive and inducible defences in two species of cotton, Gossypium hirsutum and G. herbaceum. We induced plants by applying caterpillar regurgitant to mechanical wounds to compare the induction levels between plants of both species grown in greenhouse or phytotron conditions. For this we measured defence metabolites (gossypol and heliocides) and performance of Spodoptera frugiperda caterpillars on different leaves, the emission of plant volatiles, and their attractiveness to parasitic wasps. Induction increased the levels of defence metabolites, which in turn decreased the performance of S. frugiperda larvae. Constitutive and induced defence levels were the highest in plants grown in the phytotron (compared to greenhouse plants), G. hirsutum and young leaves. Defence induction was more pronounced in plants grown in the phytotron and in young leaves. Also, the differences between growing conditions were more evident for metabolites in the youngest leaves, indicating an interaction with plant ontogeny. The composition of emitted volatiles was different between plants from the two growth conditions, with greenhouse-grown plants showing more variation than phytotron-grown plants. Also, G. hirsutum released higher amounts of volatiles and attracted more parasitic wasps than G. herbaceum. Overall, these results highlight the importance of experimental abiotic factors in plant defence induction and ontogeny of defences. We therefore suggest careful consideration in selecting the appropriate experimental growing conditions for studies on plant defences.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots

2013, Marti, Guillaume, Erb, Matthias, Boccard, J., Glauser, Gaëtan, Doyen, G. R., Villard, Neil, Robert, Christelle Aurélie Maud, Turlings, Ted, Rudaz, S., Wolfender, Jean-Luc

Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra-high-pressure liquid chromatography time-of-flight mass spectrometry (UHPLC-TOF-MS)-based metabolomics approach to evaluate local and systemic herbivore-induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty-two differentially regulated compounds were identified from Spodoptera littoralis-infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano-infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3-benzoxazin-4-ones, phospholipids, N-hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3-benzoxazin-4-ones increased in the vascular sap and root exudates. The role of N-hydroxycinnamoyltyramines in plantherbivore interactions is unknown, and we therefore tested the effect of the dominating p-coumaroyltyramine on S. littoralis. Unexpectedly, p-coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

A specialist root herbivore exploits defensive metabolites to locate nutritious tissues

2012, Robert, Christelle Aurélie Maud, Veyrat, Nathalie, Glauser, Gaëtan, Marti, Guillaume, Doyen, G. R., Villard, Neil, Gaillard, Mickaël David Philippe, Köllner, Tobias G., Giron, David, Body, Mélanie, Babst, Benjamin A., Ferrieri, Richard A., Turlings, Ted, Erb, Matthias

The most valuable organs of plants are often particularly rich in essential elements, but also very well defended. This creates a dilemma for herbivores that need to maximise energy intake while minimising intoxication. We investigated how the specialist root herbivore Diabrotica virgifera solves this conundrum when feeding on wild and cultivated maize plants. We found that crown roots of maize seedlings were vital for plant development and, in accordance, were rich in nutritious primary metabolites and contained higher amounts of the insecticidal 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and the phenolic compound chlorogenic acid. The generalist herbivores Diabrotica balteata and Spodoptera littoralis were deterred from feeding on crown roots, whereas the specialist D. virgifera preferred and grew best on these tissues. Using a 1,4-benzoxazin-3-one-deficient maize mutant, we found that D. virgifera is resistant to DIMBOA and other 1,4-benzoxazin-3-ones and that it even hijacks these compounds to optimally forage for nutritious roots.

Vignette d'image
Publication
Accès libre

A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns

2020-11-23, Steinbrenner, Adam D., Muñoz-Amatriaín, Maria, Chaparro, Antonio F., Aguilar-Venegas, Jessica Montserrat, Lo, Sassoum, Okuda, Satohiro, Glauser, Gaëtan, Dongiovanni, Julien, Shi, Da, Hall, Marlo, Crubaugh, Daniel, Holton, Nicholas, Zipfel, Cyril, Abagyan, Ruben, Turlings, Ted, Close, Timothy J., Huffaker, Alisa, Schmelz, Eric A.

Herbivory is fundamental to the regulation of both global food webs and the extent of agricultural crop losses. Induced plant responses to herbivores promote resistance and often involve the perception of specific herbivore-associated molecular patterns (HAMPs); however, precisely defined receptors and elicitors associated with herbivore recognition remain elusive. Here, we show that a receptor confers signaling and defense outputs in response to a defined HAMP common in caterpillar oral secretions (OS). Staple food crops, including cowpea (Vigna unguiculata) and common bean (Phaseolus vulgaris), specifically respond to OS via recognition of proteolytic fragments of chloroplastic ATP synthase, termed inceptins. Using forward-genetic mapping of inceptin-induced plant responses, we identified a corresponding leucine-rich repeat recep-tor, termed INR, specific to select legume species and sufficient to confer inceptin-induced responses and enhanced defense against armyworms (Spodoptera exigua) in tobacco. Our results support the role of plant immune receptors in the perception of chewing herbivores and defense.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Differences in 1,4-benzoxazin-3-one profile and induction during growth of young maize affect foraging patterns of leaf herbivores

2013, Maag, Daniel, Koehler, Angela, Glauser, Gaëtan, Erb, Matthias, Wolfender, Jean-Luc, Turlings, Ted

Pas de vignette d'image disponible
Publication
Métadonnées seulement

A Specialist Root Herbivore Hijacks Defensive Metabolites to Locate Nutritious Tissues

2011-1-1, Robert, Christelle, Veyrat, Nathalie, Glauser, Gaëtan, Villard, Neil, Gaillard, Mickaël, Köllner, T.G, Giron, D, Body, M, Babst, P.A, Turlings, Ted, Erb, M

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Ultra-high pressure liquid chromatography-mass spectrometry for plant metabolomics: A systematic comparison of high-resolution quadrupole-time-of-flight and single stage Orbitrap mass spectrometers

2013, Glauser, Gaëtan, Veyrat, Nathalie, Rochat, B., Wolfender, Jean-Luc, Turlings, Ted

The response of Arabidopsis to stress caused by mechanical wounding was chosen as a model to compare the performances of high resolution quadrupole-time-of-flight (Q-TOF) and single stage Orbitrap (Exactive Plus) mass spectrometers in untargeted metabolomics. Both instruments were coupled to ultra-high pressure liquid chromatography (UHPLC) systems set under identical conditions. The experiment was divided in two steps: the first analyses involved sixteen unwounded plants, half of which were spiked with pure standards that are not present in Arabidopsis. The second analyses compared the metabolomes of mechanically wounded plants to unwounded plants. Data from both systems were extracted using the same feature detection software and submitted to unsupervised and supervised multivariate analysis methods. Both mass spectrometers were compared in terms of number and identity of detected features, capacity to discriminate between samples, repeatability and sensitivity. Although analytical variability was lower for the UHPLC-Q-TOF, generally the results for the two detectors were quite similar, both of them proving to be highly efficient at detecting even subtle differences between plant groups. Overall, sensitivity was found to be comparable, although the Exactive Plus Orbitrap provided slightly lower detection limits for specific compounds. Finally, to evaluate the potential of the two mass spectrometers for the identification of unknown markers, mass and spectral accuracies were calculated on selected identified compounds. While both instruments showed excellent mass accuracy (

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Rapid profiling of intact glucosinolates in

2012, Glauser, Gaëtan, Schweizer, F., Turlings, Ted, Reymond, P.

Introduction The analysis of glucosinolates (GS) is traditionally performed by reverse-phase liquid chromatography coupled to ultraviolet detection after a time-consuming desulphation step, which is required for increased retention. Simpler and more efficient alternative methods that can shorten both sample preparation and analysis are much needed. Objective To evaluate the feasibility of using ultrahigh-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) for the rapid profiling of intact GS. Methodology A simple and short extraction of GS from Arabidopsis thaliana leaves was developed. Four sub-2?mu m reverse-phase columns were tested for the rapid separation of these polar compounds using formic acid as the chromatographic additive. High-resolution QTOFMS was used to detect and identify GS. Results A novel charged surface hybrid (CSH) column was found to provide excellent retention and separation of GS within a total running time of 11?min. Twenty-one GS could be identified based on their accurate mass as well as isotopic and fragmentation patterns. The method was applied to determine the changes in GS content that occur after herbivory in Arabidopsis. In addition, we evaluated its applicability to the profiling of other Brassicaceae species. Conclusion The method developed can profile the full range of GS, including the most polar ones, in a shorter time than previous methods, and is highly compatible with mass spectrometric detection. Copyright (c) 2012 John Wiley & Sons, Ltd.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores

2011, Glauser, Gaëtan, Marti, Guillaume, Villard, Neil, Doyen, Gwladys A., Wolfender, Jean-Luc, Turlings, Ted, Erb, Matthias

In monocotyledonous plants, 1,4-benzoxazin-3-ones, also referred to as benzoxazinoids or hydroxamic acids, are one of the most important chemical barriers against herbivores. However, knowledge about their behavior after attack, mode of action and potential detoxification by specialized insects remains limited. We chose an innovative analytical approach to understand the role of maize 1,4-benzoxazin-3-ones in plant?insect interactions. By combining unbiased metabolomics screening and simultaneous measurements of living and digested plant tissue, we created a quantitative dynamic map of 1,4-benzoxazin-3-ones at the plant?insect interface. Hypotheses derived from this map were tested by specifically developed in vitro assays using purified 1,4-benzoxazin-3-ones and active extracts from mutant plants lacking 1,4-benzoxazin-3-ones. Our data show that maize plants possess a two-step defensive system that effectively fends off both the generalist Spodoptera littoralis and the specialist Spodoptera frugiperda. In the first step, upon insect attack, large quantities of 2-?-d-glucopyranosyloxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA-Glc) are formed. In the second step, after tissue disruption by the herbivores, highly unstable 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA) is released by plant-derived ?-glucosidases. HDMBOA acts as a strong deterrent to both S. littoralis and S. frugiperda. Although constitutively produced 1,4-benzoxazin-3-ones such as 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) are detoxified via glycosylation by the insects, no conjugation of HDMBOA in the insect gut was found, which may explain why even the specialist S. frugiperda has not evolved immunity against this plant defense. Taken together, our results show the benefit of using a plant?insect interface approach to elucidate plant defensive processes and unravel a potent resistance mechanism in maize.