Options
Valette, Alain
Résultat de la recherche
Vanishing and non-vanishing for the first L
2005, Bourdon, Marc, Martin, Florian, Valette, Alain
We prove two results on the first L-P-cohomology (H) over bar (1)((p))(Gamma) of a finitely generated group Gamma: 1) If N subset of H subset of Gamma is a chain of subgroups, with N non-amenable and normal in Gamma, then (H) over bar (1)((P))(Gamma) = 0 as soon as (H) over bar (1)((P))(H) = 0. This allows for a short proof of a result of W. Luck: if N < Gamma, N is infinite, finitely generated as a group, and Gamma/N contains an element of infinite order, then (H) over bar (1)((2))(Gamma) = 0. 2) If Gamma acts isometrically, properly discontinuously on a proper CAT(- 1) space X, with at least 3 limit points in theta X, then for p larger than the critical exponent e(Gamma) of Gamma in X, one has (H) over bar (1)((p)) not equal A 0. As a consequence we extend a result of Y Shalom: let G be a cocompact lattice in a rank 1 simple Lie group; if G is isomorphic to Gamma, then e(G) < e(Gamma).