Options
Rebetez, Martine
Nom
Rebetez, Martine
Affiliation principale
Fonction
Professeure ordinaire
Email
martine.rebetez@unine.ch
Identifiants
RĂ©sultat de la recherche
2 RĂ©sultats
Voici les éléments 1 - 2 sur 2
- PublicationMétadonnées seulementThe upward shift in altitude of pine mistletoe (Viscum album ssp austriacum) in Switzerland - the result of climate warming?(2005)
;Dobbertin, Matthias ;Hilker, Nadine; ;Zimmermann, Niklaus E ;Wohlgemuth, ThomasRigling, AndreasPine mistletoe (Viscum album ssp. austriacum) is common in natural Scots pine (Pinus sylvestris L.) forests in the alpine Rhone Valley, Switzerland. This semi-parasite, which is regarded as an indicator species for temperature, increases the drought stress on trees and may contribute to the observed pine decline in the region. We recorded mistletoes on representative plots of the Swiss National Forest Inventory ranging from 450 to 1,550 m a.s.l. We found mistletoe on 37% of the trees and on 56% of all plots. Trees infested with mistletoe had a significantly higher mortality rate than non-infested trees. We compared the current mistletoe occurrence with records from a survey in 1910. The current upper limit, 1,250 m, is roughly 200 m above the limit of 1,000-1,100 m found in the earlier survey 100 years ago. Applying a spatial model to meteorological data we obtained monthly mean temperatures for all sites. In a logistic regression mean winter temperature, pine proportion and geographic exposition significantly explained mistletoe occurrence. Using mean monthly January and July temperatures for 1961-1990, we calculated Skre's plant respiration equivalent (RE) and regressed it against elevation to obtain the RE value at the current mistletoe elevation limit. We used this RE value and temperature from 1870-1899 in the regression and found the past elevation limit to be at 1,060 m, agreeing with the 1910 survey. For the predicted temperature rise by 2030, the limit for mistletoe would increase above 1,600 m altitude. - PublicationMétadonnées seulementTo what extent can oxygen isotopes in tree rings and precipitation be used to reconstruct past atmospheric temperature? A case study(2003)
; ;Saurer, MatthiasCherubini, PaoloWe analyzed the relationship between air temperature and oxygen isotopes measured in tree rings of silver fir (Abies alba Mill.) from a long-term forest ecosystem research plot in the Swiss Jura mountains (LWF project). The oxygen isotope data were compared with a century-long meteorological series of air temperature data. Measurements of oxygen isotope ratios in precipitation were also used for comparison. Results show that the late-wood tree-ring series is significantly correlated with May to August temperatures. Correlations were higher for maximum (daytime) air temperature and even better for air temperature measured on rainy days only. We stress that trends in maximum temperature series for this time of the year, like trends in oxygen isotope ratios series from tree rings, are completely different from trends in yearly mean temperature. Indeed, maximum temperature trends during the vegetation period slightly decreased during the 20th century, whereas yearly means increased strongly.