Options
Massiani, Anne
Preferred name
Massiani, Anne
Main Affiliation
Job title
Professeur associƩ
Identifiers
Research Output
Now showing 1 - 4 of 4
- PublicationMetadata only
- PublicationMetadata only
- PublicationMetadata onlyEstimation de la variance dāindicateurs transversaux pour lāenquĆŖte SILC en Suisse(2013-6)LāenquĆŖte SILC (Statistics on Income and Living Conditions) est une enquĆŖte europĆ©enne annuelle visant Ć mesurer la rĆ©partition des revenus, la pauvretĆ© et les conditions de vie de la population. Elle est rĆ©alisĆ©e en Suisse depuis 2007 selon un schĆ©ma rotatif de quatre panels qui permet de produire Ć la fois des estimations transversales et des estimations longitudinales. Dans cet article, nous abordons le problĆØme de lāestimation de la variance des indicateurs transversaux sur la pauvretĆ© et lāexclusion sociale retenus par Eurostat. Nos calculs tiennent compte de la non-linĆ©aritĆ© des estimateurs, de la non-rĆ©ponse totale Ć diffĆ©rentes phases dāenquĆŖte, du sondage indirect et du calage. Nous adaptons la mĆ©thode dāestimation de variance en cas de non-rĆ©ponse aprĆØs un partage des poids proposĆ©e par LavallĆ©e (2002) et obtenons un estimateur de variance asymptotiquement sans biais et trĆØs simple Ć programmer.
- PublicationMetadata onlyEstimation of the variance of cross-sectional indicators for the SILC survey in Switzerland(2013-6)SILC (Statistics on Income and Living Conditions) is an annual European survey that measures the populationās income distribution, poverty and living conditions. It has been conducted in Switzerland since 2007, based on a four-panel rotation scheme that yields both cross-sectional and longitudinal estimates. This article examines the problem of estimating the variance of the cross-sectional poverty and social exclusion indicators selected by Eurostat. Our calculations take into account the non-linearity of the estimators, total non-response at different survey stages, indirect sampling and calibration. We adapt the method proposed by LavallĆ©e (2002) for estimating variance in cases of non-response after weight sharing, and we obtain a variance estimator that is asymptotically unbiased and very easy to program.