Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Estimation of the variance of cross-sectional indicators for the SILC survey in Switzerland
 
  • Details
Options
Vignette d'image

Estimation of the variance of cross-sectional indicators for the SILC survey in Switzerland

Auteur(s)
Massiani, Anne 
Institut de statistique 
Date de parution
2013-6
In
Survey Methodology
Vol.
1
No
39
De la page
121
A la page
148
Mots-clés
  • SILC survey
  • Rotating panel
  • Inequality indices
  • Variance estimation
  • Weight-share method
  • SILC survey

  • Rotating panel

  • Inequality indices

  • Variance estimation

  • Weight-share method

Résumé
SILC (Statistics on Income and Living Conditions) is an annual European survey that measures the population’s income distribution, poverty and living conditions. It has been conducted in Switzerland since 2007, based on a four-panel rotation scheme that yields both cross-sectional and longitudinal estimates. This article examines the problem of estimating the variance of the cross-sectional poverty and social exclusion indicators selected by Eurostat. Our calculations take into account the non-linearity of the estimators, total non-response at different survey stages, indirect sampling and calibration. We adapt the method proposed by Lavallée (2002) for estimating variance in cases of non-response after weight sharing, and we obtain a variance estimator that is asymptotically unbiased and very easy to program.
Identifiants
https://libra.unine.ch/handle/123456789/15557
Autre version
http://www.statcan.gc.ca/pub/12-001-x/2013001/article/11827-eng.pdf
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00