Options
Mileti, Gaetano
Nom
Mileti, Gaetano
Affiliation principale
Fonction
Professeur titulaire
Email
gaetano.mileti@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 10 sur 127
- PublicationAccès libreRoadmap towards the redefinition of the second(2024-01-22)
;N Dimarcq ;M Gertsvolf; ;S Bize ;C W Oates ;E Peik ;D Calonico ;T Ido ;P Tavella ;F Meynadier ;G Petit ;G Panfilo ;J Bartholomew ;P Defraigne ;E A Donley ;P O Hedekvist ;I Sesia ;M Wouters ;P Dubé ;F Fang ;F Levi ;J Lodewyck ;H S Margolis ;D Newell ;S Slyusarev ;S Weyers ;J-P Uzan ;M Yasuda ;D-H Yu ;C Rieck ;H Schnatz ;Y Hanado ;M Fujieda ;P-E Pottie ;J Hanssen ;A MalimonN AshbyThis paper outlines the roadmap towards the redefinition of the second, which was recently updated by the CCTF Task Force created by the CCTF in 2020. The main achievements of optical frequency standards (OFS) call for reflection on the redefinition of the second, but open new challenges related to the performance of the OFS, their contribution to time scales and UTC, the possibility of their comparison, and the knowledge of the Earth's gravitational potential to ensure a robust and accurate capacity to realize a new definition at the level of 10−18 uncertainty. The mandatory criteria to be achieved before redefinition have been defined and their current fulfilment level is estimated showing the fields that still needed improvement. The possibility to base the redefinition on a single or on a set of transitions has also been evaluated. The roadmap indicates the steps to be followed in the next years to be ready for a sound and successful redefinition. - PublicationAccès libreA cold-atom Ramsey clock with a low volume physics package(2024-01-09)
;Alan Bregazzi; ; ; ;Paul Griffin ;Ben LewisErling RiisWe demonstrate a Ramsey-type microwave clock interrogating the 6.835~GHz ground-state transition in cold \textsuperscript{87}Rb atoms loaded from a grating magneto-optical trap (GMOT) enclosed in an additively manufactured loop-gap resonator microwave cavity. A short-term stability of 1.5×10−11~τ−1/2 is demonstrated, in reasonable agreement with predictions from the signal-to-noise ratio of the measured Ramsey fringes. The cavity-grating package has a volume of ≈67~cm\textsuperscript{3}, ensuring an inherently compact system while the use of a GMOT drastically simplifies the optical requirements for laser cooled atoms. This work is another step towards the realisation of highly compact portable cold-atom frequency standards. - PublicationAccès libreStudies on miniature and compact Ramsey double-resonance Rubidium atomic clocks using hot vapors and cold atoms(2023)
; Cette thèse présente deux nouvelles horloges atomiques au Rubidium 87 à double résonance. Le chapitre 3 se concentre sur l’horloge μPOP, la première démonstration d’une horloge double résonance en mode Ramsey dans une cellule à vapeur micro-fabriquée. La stabilité court-terme de σy(τ ) ≤ 2 × 10−11τ−1/2 et la stabilité long-terme the 1.5 × 10−12 à la journée en font l’état de l’art dans la catégorie des horloges micro-onde double résonance dans les cellules micro-fabriquées. Comme démontré dans [1], la stabilié court-terme a été optimisée pour minimiser les contributions de l’effet Dick et de la contribution du bruit d’intensité relatif du laser, avec ce dernier limitant majoritairement les performances de l’horloge à court-terme. le budget long-terme montre que les effets de light-shift en intensité et en fréquence sont respectivement un et deux ordres de grandeurs en-dessous de la stabilité mesurée de l’horloge à la journée ce qui confirme la validité de l’approche POP pour limiter ces deux effets. Dans la limite supérieure, la contribution du décalage de fréquence dû à la température de la cellule est deux ordres de grandeurs au-dessous de la stabilité mesurée grâce au mélange de gaz tampons N2 et Ar. Les deux derniers effets évalués, les shifts de puissance micro-onde et de position, permettent d’expliquer les limites de performances de l’horloges à moyen et long-terme. Le shift de position est le facteur limitant au long-terme et est évalué avec soin grâce à la variance de Groslambert. Les études du μPOP se concluent par la démonstration d’une méthode fiable et rapide pour mesurer les taux de relaxation dans les horloges à cellules double résonance en mode Ramsey. Les valeurs des taux de relaxation de population et de cohérence sont d’environ 5 kHz et 4 kHz respectivement à la température nominale de ≈ 100◦C. A 60◦C, les deux taux tombent à 1 kHz. Ces valeurs sont globalement bien expliquées par le modèle présenté entièrement basé sur des coefficients physiques de la litérature. Dans ces conditions la différence entre le modèle et l’expérience est d’au maximum 20%. Le chapitre 4 démontre la réalisation d’une cavité micro-onde pour une horloge à atomes froids refroidis et prégés à l’aide d’un GMOT. Le facteur de qualité est Q ≈ 360 ce qui à l’avantage de réduire de shift du cavity-pulling. Le mode de type TE011 est séparé d’au moins 500 MHz de ses voisins, comme prédit par les simulations. Ces dernières ont également permis de simuler la fréquence du mode d’intérêt à 60 MHz près qui sont aisément compensés par la gamme d’accordage de la cavité. Les excellentes propriétés du champ magnétique prédites par les simulations en terme d’uniformité et d’homogénéité sont confirmées par la mesure du facteur d’orientation de champ de 97% et l’amortissement faible des oscillations de Rabi, respectivement. Le chapitre 5 décrit les résultats obtenus lors de l’intégration de la cavité micro-onde susmentionnées dans une manipulation d’horloge à atomes froids ayant eu lieu à l’université de Strathclyde dans le groupe d’Erling Riis. Cette horloge est la première démonstration d’une horloge à atomes froids de Rb à double résonance utilisant un GMOT pour le refroidissement et le piégeage des atomes. Cette approche permet de réduire considérablement la taille de l’horloge. En pratique, environ 106 atomes à 10 μK sont piégés grâce à celui-ci. Les franges de Ramsey sont obtenues avec un temps de Ramsey allant jusqu’à 20 ms limité par la géométrie du setup. Le cycle de l’horloge implémente également une phase de sélection d’état quatique permettant d’augmenter le signal-sur-bruit de l’horloge. La stabilité finale à court-terme est d’environ 1.5 × 10−11τ−1/2 et est en adéquation avec la limite estimée à partir du signal-sur-bruit venant des franges de Ramsey. La stabilité long-terme de l’horloge est limitée par le shift de Zeeman 2ème ordre dû à l’absence de blindage magnétique du setup. ABSTRACT This thesis presents results on two microwave, double-resonance, Rubidium 87 atomic clocks. These studies are motivated by the need for compact and miniature clocks with improved performances or improved Size,Weight and Power (SWaP). A first clock study, covered in chapter 3, focuses on the μPOP clock, the first demonstration of Double Resonance (DR) Ramsey operation in a micro-manufactured hot-vapor cell clock.With a short-termstability of σy(τ ) ≤ 2 × 10−11τ−1/2 and long-termstability of 1.5 × 10−12 at one day, the μPOP clock features state-of-the-art stability for microwave miniature cell clocks. As demonstrated in [1], the μPOP clock short-term stability has been optimized to mitigate the Dick effect and laser Relative Intensity Noise (RIN) contributions, with the latter being the biggest contributor to the short-termstability. The long-terminstability budget shows that the intensity and frequency light shifts contributions are one and two order of magnitudes lower than the measured stability with a contribution of the order of 10−13 and 10−14 at one day, respectively. This confirms the interest of the Pulsed Optically Pumped (POP) approach compared to the ContinuousWave (CW) scheme and sets the potential performances of the μPOP clock. Other long-termcontributors to the instabilities have been evaluated. In the upper limit, the contribution of the cell-temperature shift to the instability is estimated to be two orders of magnitude below the measured stability, confirming the benefit of the N2 and Ar buffer gas-mixture approach for a close to zero cell-temperature sensitivity coefficient. The last two effects, the microwave-power and the position shifts are the greatest contributor to the mid and long-termstability with the latter being the limiting long-term phenomenon whose contribution must be carefully evaluated using the Groslambert covariance. The μPOP studies conclude with the description of a fast and reliable method for measuring the relaxation rates in Ramsey DR vapor-cell clocks. At the nominal cell temperature, namely ≈ 100◦C, the population and coherence relaxations rates are measured to be at the order of 5 kHz and 4 kHz, respectively. Their values have been measured down to 60◦C with both at the order of 1 kHz. Finally, a theoretical model using only parameters taken from the literature has been derived to describe the measured relaxation rates values with agreement within 20%. Chapter 4 focuses on the simulation and realization of a microwave cavity for a DR cold-atom clock using a GratingMagneto-Optical Trap (GMOT). The final cavity shows a low quality factor of Q ≈ 360 which is in the interest of reducing the cavity-pulling shift. The TE011-like cavity mode is separated by at least 500 MHz from the neighbouring modes as predicted by the simulations. The same simulations allowed to effectively predict the cavity’s resonance frequency with a small error of 60 MHz which can easily be compensated by the cavity frequency tuning mechanism. The expected simulated excellent properties of the resonance mode in termof microwave field uniformity and homogeneity are confirmed by measurement of the field field orientation factor of 97% and low Rabi oscillation damping, respectively. Chapter 5 focuses on the integration of the microwave cavity in a clock setup designed by Erling Riis group from the university of Strathclyde. The clock described in this chapter is the first realization of a DR Ramsey Rb cold-atom clock using a GMOT for cooling and trapping which reduces the clock footprint. In practise, ≈ 106 atoms at ≈ 10 μK are loaded thanks to the grating. Ramsey fringes were successfully obtained with Ramsey times up to 20 ms, limited by the clock geometric design. The clock implements state-selection that allows for increased Signal-to-Noise Ratio (SNR) and better short-term stability of ≈ 1.5 × 10−11τ−1/2. This stability is well-explained by SNR of the fringes. Long-term stability is dominated by the 2nd-order Zeeman shift contribution as the clock is not magnetically shielded. The two studies presented in this thesis, namely the μPOP and cold-atom clocks, pave the way towards more miniature and compact frequency standards, respectively. Further improvements of the former would yield a intensity light shift limited clock with ≈ 10−13 stability at one day. Further version of the latter clock using the cavity as standalone vacuum system would allow for reduced SWaP cold-atom frequency standards. - PublicationAccès libreTechnology roadmap for cold-atoms based quantum inertial sensor in space(2023)
;Sven Abend ;Baptiste Allard ;Aidan S. Arnold ;Ticijana Ban ;Liam Barry ;Baptiste Battelier ;Ahmad Bawamia ;Quentin Beaufils ;Simon Bernon ;Andrea Bertoldi ;Alexis Bonnin ;Philippe Bouyer ;Alexandre Bresson ;Oliver S. Burrow ;Benjamin Canuel ;Bruno Desruelle ;Giannis Drougakis ;René Forsberg ;Naceur Gaaloul ;Alexandre Gauguet ;Matthias Gersemann ;Paul F. Griffin ;Hendrik Heine ;Victoria A. Henderson ;Waldemar Herr ;Simon Kanthak ;Markus Krutzik ;Maike D. Lachmann ;Roland Lammegger ;Werner Magnes; ;Morgan W. Mitchell ;Sergio Mottini ;Dimitris Papazoglou ;Franck Pereira dos Santos ;Achim Peters ;Ernst Rasel ;Erling Riis ;Christian Schubert ;Stephan Tobias Seidel ;Guglielmo M. Tino ;Mathias Van Den Bossche ;Wolf von Klitzing ;Andreas Wicht ;Marcin Witkowski ;Nassim ZahzamMichał ZawadaRecent developments in quantum technology have resulted in a new generation of sensors for measuring inertial quantities, such as acceleration and rotation. These sensors can exhibit unprecedented sensitivity and accuracy when operated in space, where the free-fall interrogation time can be extended at will and where the environment noise is minimal. European laboratories have played a leading role in this field by developing concepts and tools to operate these quantum sensors in relevant environment, such as parabolic flights, free-fall towers, or sounding rockets. With the recent achievement of Bose–Einstein condensation on the International Space Station, the challenge is now to reach a technology readiness level sufficiently high at both component and system levels to provide “off the shelf” payload for future generations of space missions in geodesy or fundamental physics. In this roadmap, we provide an extensive review on the status of all common parts, needs, and subsystems for the application of atom-based interferometers in space, in order to push for the development of generic technology components. - PublicationAccès libreAn additive-manufactured microwave cavity for a compact cold-atom clock(2023)
; ;Alan Bregazzi ;Ben Lewis ;Paul F. Griffin ;Erling Riis; We present an additive-manufactured microwave cavity for a Ramsey-type, double resonance, compact cold-atom clock. Atoms can be laser cooled inside the cavity using a grating magneto-optic trap with the cavity providing an excellent TE011-like mode while maintaining sufficient optical access for atomic detection. The cavity features a low Q-factor of 360 which conveniently reduces the cavity pulling of the future clock. Despite the potential porosity of the additive-manufacturing process, we demonstrate that the cavity is well-suited for vacuum. A preliminary clock setup using cold atoms allows for measuring the Zeeman spectrum and Rabi oscillations in the cavity which enables us to infer excellent field uniformity and homogeneity, respectively, across the volume accessed by the cold atoms. Ramsey spectroscopy is demonstrated, indicating that the cavity is suitable for clock applications. Finally, we discuss the limitations of the future clock. - PublicationAccès libreA Microcell Atomic Clock Based on a Double-Resonance Ramsey Scheme(2022)
; ; ; ; ;Maddalena Violetti ;Yuanyan Su ;Anja K. Skrivervik - PublicationAccès libreGNSS-grade space atomic frequency standards: Current status and ongoing developments(2021)
; ; ; We present an overview on the current state of Global Navigation Satellite Systems (GNSS)-grade or better space atomic frequency standards’ (SAFS) technologies and discuss their applications. We estimate that a total of more than 1000 such standards were sent to space so far, the vast majority consisting of rubidium-cell frequency standards, Cs atomic beam frequency standards, and passive hydrogen masers. Finally, we review a variety of ongoing developments in view of future new generations of GNSS-grade SAFSs. - PublicationMétadonnées seulementLong-Term Stability Analysis Towards < 10-14 Level for a Highly Compact POP Rb Cell Atomic Clock(2019-4-14)
; ; ; ; Long-term frequency instabilities in vapor-cell clocks mainly arise from fluctuations of the experimental and environmental parameters that are converted to clock frequency fluctuations via various physical processes. Here, we discuss the frequency sensitivities and the resulting stability limitations at one day timescale for a rubidium vapor-cell clock based on a compact magnetron-type cavity operated in air (no vacuum environment). Under ambient laboratory conditions, the external atmospheric pressure fluctuations may dominantly limit the clock stability via the barometric effect. We establish a complete long-term instability budget for our clock operated under stable pressure conditions. Where possible, the fluctuations of experimental parameters are measured via the atomic response. The measured clock instability of < 2·E10.14 at one day is limited by the intensity light-shift effect, which could further be reduced by active stabilization of the laser intensity or stronger optical pumping. The analyses reported here show the way towards simple, compact, and low-power vapor-cell atomic clocks with excellent long-term stabilities. ≤ 10.14 at one day when operated in ambient laboratory conditions. - PublicationAccès libreRubidium vapour-cell frequency standards: metrology of optical and microwave frequency references(2019)
; Cette thèse porte sur le développement, l'étude et l'optimisation de références de fréquence compactes de hautes performances à base de cellules de vapeur de rubidium (Rb)1. Plus particulièrement, deux références de fréquence à cellules à vapeur de Rb sont étudiées : une référence de fréquence optique à 1,5 μm et une horloge atomique à double résonance à pompage optique pulsé (POP). L'utilisation de cellules à vapeur permet de réaliser des références de fréquence compactes (i.e. dans un volume de quelques litres) ayant une stabilité de fréquence relative (1) pour une horloge atomique micro-onde au niveau de 1×10-14 à 1 jour (équivalent à 1 ns/jour) et (2) pour la référence optique au niveau de 1×10-11 à 1 jour (équivalent à environ 4 kHz/jour). Ces références de fréquence compactes peuvent être utilisées dans l'industrie, les télécommunications, la navigation ou comme référence de fréquence optique embarquée (par ex. LIDAR).
La première partie de cette thèse évalue la stabilité de fréquence à moyen et long terme d'une horloge atomique POP compacte de haute performance. Cela consiste à évaluer la sensibilité de la fréquence de l'horloge aux grandeurs pertinentes : fluctuations de fréquence et d'intensité du laser (effets de décalage de fréquence due à lumière (LS)), puissance micro-onde (décalages de fréquence due à la puissance micro-ondes), et effets environnementaux (effets barométriques, température). L'impact de telles perturbations est quantifié en utilisant (1) un coefficient de sensibilité, ou coefficient de décalage de fréquence, défini comme la variation de la fréquence d'horloge par rapport au paramètre physique perturbateur (par exemple une variation de puissance σp), ΔVclock/Δp; et (2) l'amplitude des fluctuations du paramètre physique perturbateur lui-même évalué à différentes échelles de temps, σpΤ). Les coefficients de sensibilité de l'effet LS et du décalage due à la puissance micro-onde sont minimisés, contribuant à l'instabilité de fréquence de l'horloge en dessous de 10-14 dans le long terme (fluctuation de fréquence relative).
Un effet barométrique est démontré dans les étalons de fréquence à cellule de vapeur. La fluctuation naturelle de la pression atmosphérique déforme la cellule en verre, ce qui modifie la pression interne du gaz. Il en résulte un couplage de la fréquence de l'horloge avec la pression atmosphérique. Le phénomène est caractérisé expérimentalement et théoriquement, et la contribution de l'effet barométrique est réduite en dessous de 10-14. En minimisant l'effet barométrique, la sensibilité à la puissance micro-ondes et l'effet LS, on démontre une stabilité de fréquence de notre prototype d'horloge POP de 1×10-14 (fluctuation de fréquence relative) à 104 secondes de temps d'intégration.
Des études plus fondamentales sont menées sur l'origine du décalage de fréquence dû à la puissance micro-onde pour notre prototype d'horloge POP. L'impact de l'inhomogénéité du champ (champ lumineux et champ micro-ondes) sur le signal de Ramsey et la fréquence de l'horloge est étudié numériquement. Sur la base de la distribution d'amplitude du champ micro-onde simulée dans la cellule de l'horloge, le signal de Ramsey mesuré et ses propriétés (contraste, largeur totale à mi-hauteur (FWHM)) sont reproduits par simulations.
La validation de la production additive (impression 3D) pour la fabrication des cavités micro-ondes complexes est démontrée. L'horloge POP et ses possibilités (grâce à l'interrogation pulsée) est utilisée pour évaluer l'homogénéité et la distribution du champ micro-onde de la cavité micro-onde. On démontre que la distribution du champ micro-onde de la cavité fabriqué par impression 3D est équivalente au champ micro-onde d'une cavité de fabrication conventionnelle. De plus, on présente une stabilité de fréquence horloge au niveau de l'état de l'art obtenu avec une horloge ayant une cavité micro-onde fabriquée par impression 3D.
Les études présentées dans cette thèse sont des étapes importantes vers une meilleure compréhension des horloges atomiques à double résonance. L'identification de la principale source d'instabilité de fréquence à long terme (l'effet barométrique) et sa réduction en dessous d'une instabilité de fréquence relative de 10-14 permet de comparer notre prototype d'horloge atomique avec l'état de l'art des horloges atomiques compactes et à haute performance. De plus, ce niveau d'instabilité de fréquence permet de mener de nouvelles études sur les phénomènes physiques auxquels l'horloge atomique est moins sensible. La stabilité de fréquence d'horloge obtenue avec l'horloge possédant une cavité fabriquée par impression 3D est une étape importante vers la commercialisation d'horloges atomiques Rb à double résonance.
La deuxième partie de cette thèse porte sur les références de fréquence optique utilisent une cellule à vapeur de Rb pour la stabilisation en fréquence des lasers à 780 nm, 1560 nm et 1572 nm. Un laser maître de 1560 nm a été stabilisé en fréquence sur une cellule de vapeur de Rb à 780 nm par doublement de fréquence. Un générateur de peigne de fréquence optique a été utilisé pour combler l'espace de 12 nm entre 1572 nm et le laser à 1560 nm. Le système laser a été conçu pour être une référence de fréquence embarquée à 1572 nm pour un système LIDAR spatial ou pour faire du pompage optique pour les horloges atomiques à cellules Rb. La stabilité de fréquence démontrée du laser à 1572 nm est inférieure à 3×10-11 (équivalent à 5,8 kHz à 1572 nm) à toutes les échelles de temps et atteint 4×10-12 (équivalent à 760 Hz à 1572 nm) à long terme. En outre, la reproductibilité et la répétabilité du schéma de stabilisation de fréquence du laser maître ont été évaluées. La dégradation du bruit de fréquence et du bruit d'intensité par le processus de doublage de fréquence a également été évaluée. La caractérisation des références de fréquence optique permet d'identifier les futurs axes de recherche pour l'application de ces références optiques pour le pompage optique dans les horloges atomiques ou comme références de fréquence embarqué (LIDAR spatial).
1 Ces travaux ont été menés au Laboratoire Temps-Fréquence de l'Université de Neuchâtel. Ces travaux ont été soutenus par le Fonds national suisse de la recherche scientifique (FNS) : "Precision double-resonance spectroscopy and metrology with stabilised lasers and atomic vapours : applications for atomic clocks and magnetometers" n°. 156621 (2015-2019)., This thesis concerns the development, study, and optimisation of compact and high-performance frequency references based on rubidium (Rb) vapour cells1. More specially, two Rb vapour-cell frequency references are studied: an optical-frequency reference at 1.5 μm and a double-resonance pulsed optically pumped (POP) atomic clock. The use of vapour cells allows compact frequency references (typically a volume of few litres) and with relative frequency stability (1) for a microwave atomic clock at the level of 1×10-14 at 1 day (equivalent to 1 ns/day) and (2) for the optical reference at the level of 1×10-11at 1 day (equivalent to ~4 kHz/day). Such compact frequency references can be applied in industry, telecommunications, navigation, or as an on-board optical-frequency reference (e.g. LIDAR).
The first part of this thesis evaluates the medium- to long-term frequency stability of high-performance, compact POP atomic clocks. It evaluates the POP atomic clock frequency sensitivity to relevant quantities: laser frequency and intensity fluctuations (light-shift (LS) effects), microwave power (microwave-power shifts), and environmental effects (barometric effects, temperature). The impact of such perturbations are quantified using (1) a sensitivity coefficient, or shift coefficient, defined as the variation of the clock frequency with respect to the perturbing physical parameter (e.g. a power variation σp), ΔVclock/Δp; and (2) the amplitude of fluctuation of the perturbing physical parameter itself at various time scales, σp(Τ). The sensitivity coefficients of the LS effect and the microwave-power shift are minimised, contributing to the clock's long-term frequency instability below 10-14 (relative frequency fluctuation).
A barometric effect is demonstrated in vapour-cell frequency standards. The natural fluctuation of the atmospheric pressure deforms the glass body of the vapour cell, which changes the internal gas pressure. It results in a coupling of the clock frequency with the atmospheric pressure. The phenomenon is characterised experimentally and theoretically, and the contribution of the barometric effect is reduced below 10-14. By minimising the barometric effect, the microwave-power sensitivity, and the LS effect, a POP clock frequency stability of 1×10-14 (relative frequency fluctuation) at 104 seconds of integration time is demonstrated.
More fundamental studies are carried out on the origin of the microwave-power shift in our POP clock prototype. The impact of the field inhomogeneity (light field and microwave fields) on the Ramsey signal and the clock frequency is studied numerically. Based on the simulated microwave-field amplitude distribution in the clock vapour cell, the measured Ramsey signal and its properties (contrast, the full width at half maximum (FWHM)) is reproduced by simulations.
The validation of the additive manufacturing (3D printing) for the fabrication of the complex microwave cavities is demonstrated. The POP clock setup and its possibilities (due to pulsed interrogation) is used to evaluate the homogeneity and the distribution of the microwave field of the 3D-printed microwave cavity. Equivalent microwave-field distribution between the additive manufacturing cavity and the conventional-manufacturing cavity is demonstrated. Short-term frequency stability at the level of the state-of-the-art is presented.
The studies on microwave atomic clocks presented in this thesis constitute important steps towards a better understanding of double-resonance atomic clocks. The identification of the main source of long-term frequency instability and its reduction to below a relative frequency instability of 10-14 allows for our atomic clock prototype to be compared with state-of-the-art, compact, high-performance atomic clock. Moreover, this level of frequency instability allows for new studies on the physical phenomena to which the atomic clock is less sensitive to be conducted. The reported clock frequency stability with the additive manufacturing technology is an important step towards the commercialisation of high-performance double-resonance Rb atomic clocks.
The optical-frequency references studied in this thesis used an Rb vapour cell for the frequency stabilisation of lasers at 780 nm, 1560 nm and 1572 nm. A 1560 nm master laser was frequency stabilised to a Rb optical transition at 780 nm using frequency doubling. An optical-frequency comb generator was used to fill the gap of 12 nm between 1572 nm and the laser at 1560 nm. The laser system was designed to be an on-board frequency reference at 1572 nm for spaceborne CO2 LIDAR systems or optical pumping for Rb cell atomic clocks. The demonstrated frequency stability of the 1572 nm laser at 1572 nm is below 3×10-11 (equivalent to 5.8 kHz at 1572 nm) at all time scales reaching 4×10-12 (equivalent to 760 Hz at 1572 nm) in the long-term at the state-of-the-art level. In addition, the reproducibility and repeatability of the frequency stabilisation scheme of the master laser were evaluated. The degradation of the frequency noise and the relative intensity noise through the non-linear doubling process were also evaluated. The characterisation of the optical-frequency references identifies the basic elements for future evaluations of applications of optical pumping in atomic clocks or satellite LIDAR on-board frequency references.
1 This work was conducted at the Laboratoire Temps-Fréquence at the University of Neuchâtel. This work was supported by the Swiss National Science Foundation (FNS): “Precision double-resonance spectroscopy and metrology with stabilised lasers and atomic vapours: applications for atomic clocks and magnetometers” no. 156621 (2015–2019). - PublicationAccès libre3D printed microwave cavity for atomic clock applications: proof of concept(2018-6-7)
; ; ; ;Skrivervik, A.K. ;Ivanov, A.E. ;Debogovic, T.de Rijk, E.The authors present the realisation and characterisation of an additively manufactured (AM) microwave resonator cavity for double-resonance (DR) vapour-cell atomic clocks. The design of the compact microwave cavity is based on the loop-gap resonator approach, previously demonstrated for conventionally-machined aluminium components. In the present study, the resonator is fabricated by AM using a metal-coated polymer. A resonance frequency at the desired 6.835 GHz rubidium atomic frequency is obtained. When employed in an atomic clock setup, the AM cavity enables a DR signal of <;500 Hz linewidth and of nearly 20% contrast, thus fulfilling the stringent requirements for DR atomic clocks. A clock short-term stability of 1 × 10 -12 τ -1/2 is demonstrated, comparable to state-of-the-art clock performances.