Voici les éléments 1 - 2 sur 2
Vignette d'image
Publication
Accès libre

Host plant cyanotype determines degree of rhizobial symbiosis

2017-9-8, Godschalx, Adrienne, Vy, Tran, Ballhorn, Daniel

Plants with nitrogen-fixing bacteria, such as legumes with rhizobia, can tap the atmospheric nitrogen pool to obtain resources for defense compounds. Cyanogenesis, a nitrogen-based plant defense against herbivores, increases in response to rhizobial colonization, but depends on plant genotype. Here, we tested whether genotypic differences in host plant cyanogenesis influence symbiotic reliance on nitrogen-fixing rhizobia. Using thin, clear soil containers, we counted nodules on live root systems of distinct high (HC) and low (LC) lima bean (Phaseolus lunatus) cyanotypes across the duration of an eight-week study. We measured changes in cyanogenic potential (HCNp) and protein content to reveal quantitative interactions between nodule number and both leaf traits. High cyanogenic plants maintained consistently twice as many nodules as LC plants. Including both cyanotypes, nodule number correlated positively with HCNp, but negatively with foliar protein content. However, within-cyanotype interactions between nodule number and plant traits were not significant except for foliar protein in HC plants, which decreased with increasing nodule number. Our results imply that while genotypes with higher levels of nitrogen-based defense invest more in the rhizobial partner, the costs involved in maintaining the symbiosis may cause resource allocation constraints in the plants' primary nitrogen metabolism.

Vignette d'image
Publication
Accès libre

Ants are less attracted to the extrafloral nectar of plants with symbiotic, nitrogen-fixing rhizobia

2015-2-1, Godschalx, Adrienne, Schädler, Martin, Trisel, Julie, Balkan, Mehmet, Ballhorn, Daniel

Plants simultaneously maintain mutualistic relationships with different partners that are connected through the same host, but do not interact directly. One or more participating mutualists may alter their host's phenotype, resulting in a shift in the host's ecological interactions with all other mutualists involved. Understanding the functional interplay of mutualists associated with the same host remains an important challenge in biology. Here, we show belowground nitrogen-fixing rhizobia on lima bean (Phaseolus lunatus) alter their host plant's defensive mutualism with aboveground ants. We induced extrafloral nectar (EFN), an indirect defense acting through ant attraction. We also measured various nutritive and defensive plant traits, biomass, and counted ants on rhizobial and rhizobia-free plants. Rhizobia increased plant protein as well as cyanogenesis, a direct chemical defense against herbivores, but decreased EFN. Ants were significantly more attracted to rhizobia-free plants, and our structural equation model shows a strong link between rhizobia and reduced EFN as well as between EFN and ants: the sole path to ant recruitment. The rhizobia-mediated effects on simultaneously expressed defensive plant traits indicate rhizobia can have significant bottom-up effects on higher trophic levels. Our results show belowground symbionts play a critical and underestimated role in determining aboveground mutualistic interactions.