Options
Renard, Philippe
Nom
Renard, Philippe
Affiliation principale
Fonction
Directeur de Recherche
Email
Philippe.Renard@unine.ch
Identifiants
RĂ©sultat de la recherche
3 RĂ©sultats
Voici les éléments 1 - 3 sur 3
- PublicationAccès libreComparison of three geostatistical methods for hydrofacies simulation: a test on alluvial sediments(2012-1-10)
;dell?Arciprete, Diana ;Bersezio, Riccardo ;Felletti, Fabrizio ;Giudici, Mauro ;Comunian, Alessandro - PublicationAccès libreThree-dimensional high resolution fluvio-glacial aquifer analog - Part 2: Geostatistical modeling(2011-7-21)
;Comunian, Alessandro; ; Bayer, PeterThe heterogeneity of sedimentary structures at the decimeter scale is crucial to the understanding of groundwater flow and transport. In a series of two papers, we provide a detailed analysis of a fluvio-glacial aquifer analog: the Herten site. The geological data along a series of 2D sections in a quarry, the corresponding GPR measurements, and their sedimentological interpretation are described in the companion paper. In this paper, we focus on the three-dimensional reconstruction of the heterogeneity. The resulting numerical model is provided as an electronic supplementary material for further studies. Furthermore, the geostatistical parameters derived from this analysis and the methodology described in the paper could be used in the future for the simulation of similar deposits where less data would be available. To build the 3D model, we propose a hierarchical simulation method which integrates various geostatistical techniques. First, we model the subdivision of the domain into regions corresponding to main sedimentological structures (e.g. a sedimentation event). Within these volumes, we use multiple-point statistics to describe the internal heterogeneity. What is unusual here is that we do not try to use a complex training image for the multiple-point algorithm accounting for all the non-stationarity and complexity, but instead use a simple conceptual model of heterogeneity (ellipsoidal shapes as a training image) and constrain the multiple point simulations within the regions by a detailed interpolation of orientation data derived from the 2D sections. This method produces realistic geological structures. The analysis of the flow and transport properties (hydraulic conductivity and tracer breakthrough curves) of the resulting model shows that it is closer to the properties estimated directly from the 2D geological observations rather than those estimated from a model of heterogeneity based on probability of transitions and not including the modeling of the large-scale structures. - PublicationAccès libreThree-dimensional high resolution fluvio-glacial aquifer analog - Part 1: Field study(2011)
;Bayer, P. ;Huggenberger, P.; Comunian, AlessandroDescribing the complex structures that exist in many sedimentary aquifers is crucial for reliable groundwater flow and transport simulation. However, hardly any aquifer can be inspected in such detail that all decimeter to meter heterogeneity is resolved. Aquifer analogs serve as surrogates to construct models of equivalent heterogeneity, and thus imitate those features relevant for flow or transport processes. Gravel pits found in excavation show excellent sections of the sedimentary sequence and thus offer direct insight into the structural and textural composition of the subsoil. This paper describes an approach to also inspect the third dimension: by mapping during the ongoing excavation it is possible to obtain a three-dimensional representation of the subsurface within a short period of time. A detailed description of a case study is presented and the findings from sedimentological, hydrogeological and geophysical analyses are compared. The gravel pit is located near the town of Herten in southwest Germany, where relatively young unconsolidated fluvio-glacial and fluvial sediments in the Rhine basin are mined. The excavated gravel body is built up by architectural elements typical for braided river deposits. The study generated a high-resolution data set of lithofacies, hydrofacies and ground penetrating radar (GPR) profiles. It represents the basis for a full three-dimensional geostatistical reconstruction presented in the second part.