Voici les éléments 1 - 3 sur 3
  • Publication
    Accès libre
    Patterns of earthworm, enchytraeid and nematode diversity and community structure in urban soils of different ages
    (2016-1-9) ;
    Dozsa-Farkas, Klara
    ;
    Boros, Gergely
    ;
    Rochat, Guy
    ;
    Sandoz, Gauthier
    ;
    ; ;
    Annelids (Lumbricidae and Enchytraeidae) and nematodes are common soil organisms and play important roles in organic matter decomposition, nutrient cycling and creation of soil structure and porosity. However, these three groups have rarely been studied together and only few studies exist for urban soils. We studied the diversity and community composition of annelids and nematodes in soils spanning more than two centuries of urban soil development in Neuch^atel (Switzerland) and assessed the relationships 1) among these three groups and 2) between each group and environmental (physical, chemical and functional) characteristics of soils and soil age. While the groups of environmental variables were correlated (Mantel tests) no correlation was found between pairs of soil fauna groups and between each soil fauna group and environmental variables. More specifically, redundancy analyses showed that earthworm assemblages were best correlated with soil bulk density and with soil depth, the latter being positively correlated with soil age. Enchytraeid assemblages and the proportion of enchytraeid r-strategists were respectively best correlated with soil carbonate content and negatively correlated with soil age. Nematodes assemblages were best correlated with soil water content. Moreover, relationships between pairs of soil biota groups, and between each group and environmental (physical, chemical and functional) variables, varied along the soil age gradient (moving window analysis). This study provides new knowledge on urban soil biodiversity and how environmental conditions can influence soil diversity and community patterns in the urban context. The contrasted community patterns of earthworms, enchytraeids and nematodes in urban soils of different ages and their different ecological roles suggest that they represent potential complementary indicators of soil quality and functioning such as soil formation and organic matter dynamics.
  • Publication
    Accès libre
    Patterns of earthworm, enchytraeid and nematode diversity and community structure in urban soils of different ages
    ;
    Dózsa-Farkas, Klára
    ;
    Boros, Gergely
    ;
    Rochat, Guy
    ;
    Sandoz, Gauthier
    ;
    ; ;
    Annelids (Lumbricidae and Enchytraeidae) and nematodes are common soil organisms and play important roles in organic matter decomposition, nutrient cycling and creation of soil structure and porosity. However, these three groups have rarely been studied together and only few studies exist for urban soils. We studied the diversity and community composition of annelids and nematodes in soils spanning more than two centuries of urban soil development in Neuchâtel (Switzerland) and assessed the relationships 1) among these three groups and 2) between each group and environmental (physical, chemical and functional) characteristics of soils and soil age.
    While the groups of environmental variables were correlated (Mantel tests) no correlation was found between pairs of soil fauna groups and between each soil fauna group and environmental variables. More specifically, redundancy analyses showed that earthworm assemblages were best correlated with soil bulk density and with soil depth, the latter being positively correlated with soil age. Enchytraeid assemblages and the proportion of enchytraeid r-strategists were respectively best correlated with soil carbonate content and negatively correlated with soil age. Nematodes assemblages were best correlated with soil water content. Moreover, relationships between pairs of soil biota groups, and between each group and environmental (physical, chemical and functional) variables, varied along the soil age gradient (moving window analysis).
    This study provides new knowledge on urban soil biodiversity and how environmental conditions can influence soil diversity and community patterns in the urban context. The contrasted community patterns of earthworms, enchytraeids and nematodes in urban soils of different ages and their different ecological roles suggest that they represent potential complementary indicators of soil quality and functioning such as soil formation and organic matter dynamics.
  • Publication
    Accès libre
    Can soil testate amoebae be used for estimating the time since death?: A field experiment in a deciduous forest
    Estimation of the post-mortem interval (PMI, the time interval between death and recovery of a body) can be crucial in solving criminal cases. Today minimum PMI calculations rely mainly on medical and entomological evidence. However, beyond 4–6 weeks even entomological methods become less accurate. Thus additional tools are needed. Cadaveric fluids released by decomposing cadavers modify the soil environment and thus impact soil organisms, which may thus be used to estimate the PMI. Although the response of bacteria or fungi to the presence of a corpse has been studied, to the best of our knowledge nothing is known about other soil organisms. Testate amoebae, a group of shelled protozoa, are sensitive bioindicators of soil physico-chemical and micro-climatic conditions and are therefore good potential PMI indicators. We investigated the response of testate amoebae to three decomposing pig cadavers, and compared the pattern to two controls each, bare soils and fake cadavers, in a beach-oak forest near Neuchâtel, Switzerland. Forest litter samples collected in the three treatments over 10 months were analysed by microscopy. The pig treatment significantly impacted the testate amoeba community: after 22 and 33 days no living amoeba remained underneath the pig cadavers. Communities subsequently recovered but 10 months after the beginning of the experiment recovery was not complete. The fake cadavers also influenced the testate amoeba communities by altering the soil microclimate during a dry hot period, but less than the cadavers. These results confirm the sensitivity of soil testate amoebae to micro-climatic conditions and show that they respond fast to the presence of cadavers – and that this effect although decreasing over time lasts for months, possibly several years. This study therefore confirms that soil protozoa could potentially be useful as forensic indicators, especially in cases with a longer PMI.