Options
Fournier, Bertrand
Nom
Fournier, Bertrand
Affiliation principale
Identifiants
Résultat de la recherche
4 Résultats
Voici les éléments 1 - 4 sur 4
- PublicationAccès librePatterns of earthworm, enchytraeid and nematode diversity and community structure in urban soils of different ages(2016-1-9)
; ;Dozsa-Farkas, Klara ;Boros, Gergely ;Rochat, Guy ;Sandoz, Gauthier; ; Annelids (Lumbricidae and Enchytraeidae) and nematodes are common soil organisms and play important roles in organic matter decomposition, nutrient cycling and creation of soil structure and porosity. However, these three groups have rarely been studied together and only few studies exist for urban soils. We studied the diversity and community composition of annelids and nematodes in soils spanning more than two centuries of urban soil development in Neuch^atel (Switzerland) and assessed the relationships 1) among these three groups and 2) between each group and environmental (physical, chemical and functional) characteristics of soils and soil age. While the groups of environmental variables were correlated (Mantel tests) no correlation was found between pairs of soil fauna groups and between each soil fauna group and environmental variables. More specifically, redundancy analyses showed that earthworm assemblages were best correlated with soil bulk density and with soil depth, the latter being positively correlated with soil age. Enchytraeid assemblages and the proportion of enchytraeid r-strategists were respectively best correlated with soil carbonate content and negatively correlated with soil age. Nematodes assemblages were best correlated with soil water content. Moreover, relationships between pairs of soil biota groups, and between each group and environmental (physical, chemical and functional) variables, varied along the soil age gradient (moving window analysis). This study provides new knowledge on urban soil biodiversity and how environmental conditions can influence soil diversity and community patterns in the urban context. The contrasted community patterns of earthworms, enchytraeids and nematodes in urban soils of different ages and their different ecological roles suggest that they represent potential complementary indicators of soil quality and functioning such as soil formation and organic matter dynamics. - PublicationAccès libreFunctional responses of multi-taxa communities to disturbance and stress gradients in a restored floodplain(2015-1-1)
; ; ; ; Moretti, Marco1. Trait-based approaches can reveal the mechanisms through which disturbances or stress impact communities, allowing comparisons of the role of different mechanisms in shaping communities among taxonomic groups. Such information can lead to higher comparability, transferability and predictability of the outcome of restoration projects. However, multitaxa trait-based approaches were rarely used in the context of ecosystem restoration. 2. We investigated the responses to environmental gradients of seven taxa (vascular plants, staphylinid and carabid beetles, spiders, isopods, diplopods and earthworms) in a restored floodplain using a species traits approach. We assessed the impact of flood disturbances and soil hydric stress on the functional diversity (FD) and community-weighted mean (CWM) response of traits for each taxon. 3. Ordination of hydrological variables revealed two main gradients. The first was related to the spatiotemporal dynamics of flood disturbances and the second to the average changes in soil hydric conditions. 4. The analysis of CWM revealed that larger, poorly mobile species with narrow ecological tolerances were filtered by regular floods and/or changes in soil hydric conditions. 5. Functional diversity patterns differed between the two gradients: decreasing with increasing flood disturbance, but increasing along the soil hydric stress gradient. This suggests that the mechanisms shaping community composition differ between the two gradients with environmental filtering being dominant with increasing flood disturbances and competition decreasing with more soil hydric stress. 6. Synthesis and applications. Our study shows that the impact of restored flood disturbances and soil hydric stress on plant and invertebrate functional diversity and community- weighted mean can be positive, negative or more complex depending on the taxonomic group and environmental gradient considered. The patterns can to some extent be explained by the specific characteristics of each group. Larger, poorly mobile species with narrow ecological tolerances were particularly vulnerable to changes in disturbance and stress regime following floodplain restoration. These species may therefore be lost in the initial phases of restoration projects, but other more characteristic species of dynamic floodplains will be favoured. Understanding the consequences of these contrasted responses for biodiversity conservation and ecosystem functioning constitutes the next challenge for ecosystem restoration. - PublicationAccès librePatterns of earthworm communities and species traits in relation to the perturbation gradient of a restored floodplain(2012-3-29)
; ; ;Shrestha, J; Little is known about the diversity and ecology of earthworms in floodplains, as well as their response to natural and anthropic perturbations (e.g. floods, river channelisation, floodplain restoration). We characterised the patterns of earthworm communities and species traits in the different habitats of a lowland restored floodplain in Switzerland. In addition to classical species-based metrics, such as species richness and Shannon diversity, species traits were used to calculate the community weighted means (CWMs) of traits and functional dispersion (FDis). We hypothesised that trait-based metrics would reveal clearer patterns than classical approaches. The distribution of earthworm traits varied among habitats in relation to changes in flooding frequency: poorly developed gravel bar soils most exposed to flooding were characterised by high abundance of small epigeic species and low abundance of large anecic species. Differences in anecic and endogeic earthworm community structure matched flood frequency. In agreement with our hypothesis, CWMs were more strongly correlated to environmental variables than species composition, diversity, or functional diversity. Based on these results, the ratio of the relative abundances of epigeic and anecic species, and the differences in species composition within anecic and endogeic ecological types of earthworms were identified as indicators of soil development in floodplains. - PublicationAccès librePatterns of earthworm, enchytraeid and nematode diversity and community structure in urban soils of different ages
; ;Dózsa-Farkas, Klára ;Boros, Gergely ;Rochat, Guy ;Sandoz, Gauthier; ; Annelids (Lumbricidae and Enchytraeidae) and nematodes are common soil organisms and play important roles in organic matter decomposition, nutrient cycling and creation of soil structure and porosity. However, these three groups have rarely been studied together and only few studies exist for urban soils. We studied the diversity and community composition of annelids and nematodes in soils spanning more than two centuries of urban soil development in Neuchâtel (Switzerland) and assessed the relationships 1) among these three groups and 2) between each group and environmental (physical, chemical and functional) characteristics of soils and soil age.
While the groups of environmental variables were correlated (Mantel tests) no correlation was found between pairs of soil fauna groups and between each soil fauna group and environmental variables. More specifically, redundancy analyses showed that earthworm assemblages were best correlated with soil bulk density and with soil depth, the latter being positively correlated with soil age. Enchytraeid assemblages and the proportion of enchytraeid r-strategists were respectively best correlated with soil carbonate content and negatively correlated with soil age. Nematodes assemblages were best correlated with soil water content. Moreover, relationships between pairs of soil biota groups, and between each group and environmental (physical, chemical and functional) variables, varied along the soil age gradient (moving window analysis).
This study provides new knowledge on urban soil biodiversity and how environmental conditions can influence soil diversity and community patterns in the urban context. The contrasted community patterns of earthworms, enchytraeids and nematodes in urban soils of different ages and their different ecological roles suggest that they represent potential complementary indicators of soil quality and functioning such as soil formation and organic matter dynamics.