Options
Di Domenico, Gianni
RƩsultat de la recherche
Measurement of the magnetic field profile in the atomic fountain clock FoCS-2 using Zeeman spectroscopy
2017, Devenoges, Laurent, Di Domenico, Gianni, Stefanov, André, Jallageas, Antoine, Morel, Jacques, Südmeyer, Thomas, Thomann, Pierre
We report the evaluation of the second-order Zeeman shift in the continuous atomic fountain clock FoCS-2. Because of its continuous operation and geometrical constraints, the methods used in pulsed fountains are not applicable. We use here time-resolved Zeeman spectroscopy to probe the magnetic field profile in the clock. Pulses of ac magnetic excitation allow us to spatially resolve the Zeeman frequency and to evaluate the Zeeman shift with a relative uncertainty smaller than 5 Ć 10ā16.
Cross-influence between the two servo-loops of a fully-stabilized Er:fiber optical frequency comb
2012-9-28, Dolgovskiy, Vladimir, Bucalovic, Nikola, Thomann, Pierre, Schori, Christian, Di Domenico, Gianni, Schilt, Stephane
We present a study of the impact of the cross-coupling between the two servo loops used to stabilize the repetition rate frep and the carrier-envelope offset (CEO) frequency fCEO in a commercial Er:fiber frequency comb, based on the combination of experimental measurements and a model of the coupled loops. The developed theoretical model enables us to quantify the influence of the servo-loop coupling on an optical comb line, by simulating the hypothetic case where no coupling would be present. Numerical values for the model were obtained from an extensive characterization of the comb, in terms of frequency noise and dynamic response to a modulation applied to each actuator, for both frep and fCEO. To validate the model, the frequency noise of an optical comb line at 1.56 μm was experimentally measured from the heterodyne beat between the comb and a cavity-stabilized ultranarrow-linewidth laser and showed good agreement with the calculated noise spectrum. The coupling between the two stabilization loops results in a more than 10-fold reduction of the comb mode frequency noise power spectral density in a wide Fourier frequency range.
Noise properties of an optical frequency comb from a SESAM-modelocked 1.5 µm solid-state laser stabilized to the 10E-13 level
2012-5-26, Schilt, Stephane, Dolgovskiy, Vladimir, Bucalovic, Nikola, Schori, Christian, Stumpf, Max, Di Domenico, Gianni, Pekarek, Selina, Oehler, Andreas, Südmeyer, Thomas, Keller, Ursula, Thomann, Pierre
We present a detailed investigation of the noise properties of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser operating in the 1.5-μm spectral region. The stabilization of the passively mode-locked Er:Yb:glass laser oscillator, referred to as ERGO, is achieved using pump power modulation for the control of the carrier envelope offset (CEO) frequency and by adjusting the laser cavity length for the control of the repetition rate. The stability and the noise of the ERGO comb are characterized in free-running and in phase-locked operation by measuring the noise properties of the CEO, of the repetition rate, and of a comb line at 1558 nm. The comb line is analyzed from the heterodyne beat signal with a cavity-stabilized ultra-narrow-linewidth laser using a frequency discriminator. Two different schemes to stabilize the comb to a radio-frequency (RF) reference are compared. The comb properties (phase noise, frequency stability) are limited in both cases by the RF oscillator used to stabilize the repetition rate, while the contribution of the CEO is negligible at all Fourier frequencies, as a consequence of the low-noise characteristics of the CEO-beat. A linewidth of ā150 kHz and a fractional frequency instability of 4.2Ć1Eā13 at 1 s are obtained for an optical comb line at 1558 nm. Improved performance is obtained by stabilizing the comb to an optical reference, which is a cavity-stabilized ultra-narrow linewidth laser at 1558 nm. The fractional frequency stability of 8Ć1Eā14 at 1 s, measured in preliminary experiments, is limited by the reference oscillator used in the frequency comparison.
Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-µm range
2014, Dolgovskiy, Vladimir, Schilt, Stephane, Bucalovic, Nikola, Di Domenico, Gianni, Grop, Serge, Dubois, Benoît, Giordano, Vincent, Südmeyer, Thomas
We demonstrate the first ultra-stable microwave generation based on a 1.5-µm diode-pumped solid-state laser (DPSSL) frequency comb. Our system relies on optical-to-microwave frequency division from a planar-waveguide external cavity laser referenced to an ultra-stable FabryāPerot cavity. The evaluation of the microwave signal at ~10 GHz uses the transportable ultra-low-instability signal source ULISSĀ®, which employs a cryo-cooled sapphire oscillator. With the DPSSL comb, we measured ā125 dBc/Hz phase noise at 1 kHz offset frequency, likely limited by the photo-detection shot-noise or by the noise floor of the reference cryo-cooled sapphire oscillator. For comparison, we also generated low-noise microwave using a commercial Er:fiber comb stabilized in similar conditions and observed >20 dB lower phase noise in the microwave generated from the DPSSL comb. Our results confirm the high potential of the DPSSL technology for low-noise comb applications.
New-generation cryogenic sapphire microwave oscillators for space, metrology and scientific applications
2012-8-28, Giordano, Vincent, Grop, Serge, Dubois, BenoƮt, Bourgeois, Pierre-Yves, KersalƩ, Yann, Haye, GrƩgory, Dolgovskiy, Vladimir, Bucalovic, Nikola, Di Domenico, Gianni, Schilt, Stephane, Chauvin, Jacques, Valat, Davis, Rubiola, Enrico
This article reports on the characterization of cryogenic sapphireoscillators (CSOs), and on the first test of a CSO in a real field installation, where ultimate frequency stability and continuous operation are critical issues, with no survey. Thanks to low-vibration liquid-He cryocooler design, Internet monitoring, and a significant effort of engineering, these oscillators could bridge the gap from an experiment to a fully reliable machine. The cryocooler needs scheduled maintenance every 2 years, which is usual for these devices. The direct comparison of two CSOs demonstrates a frequency stability of 5 Ć 10Eā16 for 30 s < Ļ < 300 s integration time, and 4.5 Ć 10Eā15 at 1 day (1 Ć 10Eā14 typical). Two prototypes are fully operational, codenamed ELISA and ULISS. ELISA has been permanently installed the new deep space antenna station of the European Space Agency in Malargüe, Argentina, in May 2012. ULISS is a transportable version of ELISA, modified to fit in a small van (8.5 m2 footprint). Installation requires a few hours manpower and 1 day of operation to attain full stability. ULISS, intended for off-site experiments and as a technology demonstrator, and has successfully completed two long-distance travels.
Wavelength tuning and thermal dynamics of continuous-wave mid-IR distributed feedback quantum cascade laser
2013-7-17, Tombez, Lionel, Cappelli, Francesco, Schilt, Stephane, Di Domenico, Gianni, Bartalini, Saverio, Hofstetter, Daniel
We report on the wavelength tuning dynamics in continuous-wave distributed feedback quantum cascade lasers (QCLs). The wavelength tuning response for direct current modulation of two mid-IR QCLs from different suppliers was measured from 10āHz up to several MHz using ro-vibrational molecular resonances as frequency-to-intensity converters. Unlike the output intensity, which can be modulated up to several gigahertz, the frequency-modulation bandwidth was found to be on the order of 200ākHz, limited by the laser thermal dynamics. A non-negligible roll-off and a significant phase shift are observed above a few hundred hertz already and explained by a thermal model.
Wavelength tuning and thermal dynamics of continuous-wave mid-infrared distributed feedback quantum cascade lasers
2013, Tombez, Lionel, Cappelli, Francesco, Schilt, Stephane, Di Domenico, Gianni, Bartalini, Saverio, Hofstetter, Daniel
We report on the wavelength tuning dynamics in continuous-wave distributed feedback quantum cascade lasers (QCLs). The wavelength tuning response for direct current modulation of two mid-IR QCLs from different suppliers was measured from 10āHz up to several MHz using ro-vibrational molecular resonances as frequency-to-intensity converters. Unlike the output intensity, which can be modulated up to several gigahertz, the frequency-modulation bandwidth was found to be on the order of 200ākHz, limited by the laser thermal dynamics. A non-negligible roll-off and a significant phase shift are observed above a few hundred hertz already and explained by a thermal model.
Experimental Validation of a Simple Approximation to Determine the Linewidth of a Laser from its Frequency Noise Spectrum
2012-7-2, Bucalovic, Nikola, Dolgovskiy, Vladimir, Schori, Christian, Thomann, Pierre, Di Domenico, Gianni, Schilt, Stephane
Laser frequency fluctuations can be characterized either comprehensively by the frequency noise spectrum or in a simple but incomplete manner by the laser linewidth. A formal relation exists to calculate the linewidth from the frequency noise spectrum, but it is laborious to apply in practice. We recently proposed a much simpler geometrical approximation applicable to any arbitrary frequency noise spectrum. Here we present an experimental validation of this approximation using laser sources of different spectral characteristics. For each of them, we measured both the frequency noise spectrum to calculate the approximate linewidth and the actual linewidth directly. We observe a very good agreement between the approximate and directly measured linewidths over a broad range of values (from kilohertz to megahertz) and for significantly different laser line shapes.