Voici les éléments 1 - 8 sur 8
  • Publication
    Accès libre
    Genetic and Environmental Sources of Variation in the Autogenous Chemical Defense of a Leaf Beetle
    (2007)
    Triponez, Yann
    ;
    Naisbit, Russell. E.
    ;
    Jean-Denis, J. B.
    ;
    ;
    Alvarez, Nadir
    Chemical defense plays a central role for many herbivorous insects in their interactions with predators and host plants. The leaf beetle genus Oreina (Coleoptera, Chrysomelidae) includes species able to both sequester pyrrolizidine alkaloids and autogenously produce cardenolides. Sequestered compounds are clearly related to patterns of host-plant use, but variation in de novo synthesized cardenolides is less obviously linked to the environment. In this study, intraspecific variation in cardenolide composition was examined by HPLC–MS analysis in 18 populations of Oreina speciosa spanning Europe from the Massif Central to the Balkans. This revealed the defense secretion to be a complex blend of up to 42 compounds per population. There was considerable geographical variation in the total sample of 50 compounds detected, with only 14 found in all sites. The environmental and genetic influences on defense chemistry were investigated by correlation with distance matrices based on habitat factors, host-plant use, and genetics (sequence data from COI, COII, and 16s rRNA). This demonstrated an influence of both genetics and host-plant use on the overall blend of cardenolides and on the presence of some of the individual compounds. The implications of this result are discussed for the evolution of defense chemistry and for the use of cardenolide compounds as markers of the evolutionary history of the species.
  • Publication
    Accès libre
    Mate Choice and Toxicity in Two Species of Leaf Beetles with Different Types of Chemical Defense
    (2003)
    Labeyrie, Estelle
    ;
    Blanckenhorn, Wolf U.
    ;
    Evidence for the use of defensive compounds for sexual purposes is scarce, even though sexual selection might have some importance for the evolution of defensive traits. This study investigates the effect of defense-related traits and body size on mating success in two sister species of leaf beetle differing in their type of chemical defense. Oreina gloriosa produces autogenous cardenolides, whereas O. cacaliae sequesters pyrrolizidine alkaloids from its food plant. Larger O. gloriosa males with more toxin or higher toxin concentration had a mating advantage, likely due to direct or indirect female choice. In the laboratory, particular pairings recurred repeatedly in this species, indicating mate fidelity. O. gloriosa females were also subject to sexual selection, possibly by male choice, because larger females and those with higher toxin concentration mated more readily and more often. In O. cacaliae, in contrast, sexual selection for toxicity and body size was not detected, or at best was much weaker. Because toxicity is heritable in O. gloriosa but environment-dependent in O. cacaliae, individuals of the former species could be choosing well-defended partners with good genes. Our study suggests that sexual selection may contribute to the maintenance of heritable defensive traits.
  • Publication
    Accès libre
    Sequestration, Maintenance, and Tissue Distribution of Pyrrolizidine Alkaloid N-Oxides in Larvae of Two Oreina Species
    (1999)
    Ehmke, Adelheid
    ;
    ;
    Pasteels, Jacques M.
    ;
    Theuring, Claudine
    ;
    Hartmann, Thomas
    Oreina cacaliae and O. speciosissima are leaf beetles that, as larvae and adults, sequester pyrrolizidine alkaloid N-oxides (PAs) as defensive compounds from their host plants Adenostyles alliariae and Senecio nemorensis. As in most Oreina species, O. speciosissima is also defended by autogenously produced cardenolides (mixed defensive strategy), whereas O. cacaliae does not synthesize cardenolides and is exclusively dependent on host-plant-acquired PAs (host-derived defense). Adults of the two Oreina species were found to have the same PA storage capacity. The larvae, however, differ; larvae of O. speciosissima possess a significantly lower capability to store PAs than O. cacaliae. The ability of Oreina larvae to sequester PAs was studied by using tracer techniques with 14C-labeled senecionine N-oxide. Larvae of the two species efficiently take up [14C]senecionine N-oxide from their food plants and store the alkaloid as N-oxide. In O. cacaliae, there is a slow but continuous loss of labeled senecionine N-oxide. This effect may reflect the equilibrium between continuous PA uptake and excretion, resulting in a time-dependent tracer dilution. No noticeable loss of labeled alkaloid is associated with molting. Senecionine N-oxide is detectable in all tissues. The hemolymph is, with ca. 50–60% of total PAs, the major storage compartment, followed by the integument, with ca 30%. The alkaloid concentration in the hemolymph is approximately sixfold higher than in the solid tissues. The selectivity of PA sequestration in larvae is comparable to PA sequestration in the bodies of adult beetles.
  • Publication
    Accès libre
    Host-Plant Switches and the Evolution of Chemical Defense and Life History in the Leaf Beetle Genus Oreina
    (1996)
    Dobler, Susanne
    ;
    Mardulyn, Patrick
    ;
    Pasteels, Jacques M.
    ;
    Insect-plant interactions have played a prominent role in investigating phylogenetic constraints in the evolution of ecological traits. The patterns of host association among specialized insects have often been described as highly conservative, yet not all specialized herbivorous insect lineages display the same degree of fidelity to their host plants. In this paper, we present an estimate of the evolutionary history of the leaf beetle genus Oreina. This genus displays an amazing flexibility in several aspects of its ecology and life history (1) host plant switches in Oreina occurred between plant families or distantly related tribes within families and thereby to more distantly related plants than in several model systems that have contributed to the idea of parallel cladogenesis; (2) all species of the genus are chemically defended, but within the genus a transition between autogenous production of defensive toxins and sequestration of secondary plant compounds has occurred; and (3) reproductive strategies in the genus range from oviparity to viviparity including all intermediates that could allow the gradual evolution of viviparity Cladistic analysis of 18 allozyme loci found two most parsimonious trees that differ only in the branching of one species. According to this phylogeny estimate, Oreina species were originally associated with Asteraceae, with an inclusion of Apiaceae in the diet of one oligophagous species and an independent switch to Apiaceae in a derived clade. The original mode of defense appears to be the autogenous production of cardenolides as previously postulated; the additional sequestration of pyrrolizidine alkaloids could have either originated at the base of the genus or have arisen three times independently in all species that switched to plants containing these compounds. Viviparity apparently evolved twice in the genus, once without matrotrophy, through a retention of the eggs inside the female's oviducts, and once in combination with matrotrophy. We hypothesize that the combination of autogenous defense and a life history that involves mobile externally feeding larvae allowed these beetles to switch host plants more readily than has been reported for highly conservative systems.
  • Publication
    Accès libre
    Distribution of autogenous and host-derived chemical defenses in Oreina leaf beetles (Coleoptera: Chrysomelidae)
    (1995)
    Pasteels, Jacques M.
    ;
    Dobler, Susanne
    ;
    ;
    Ehmke, Adelheid
    ;
    Hartmann, Thomas
    ;
    Pasteels, Jacques M.
    ;
    Dobler, Susanne
    ;
    Ehmke, Adelheid
    ;
    Hartmann, Thomas
    The pronotal and elytral defensive secretions of 10 Oreina species were analyzed. Species feeding on Apiaceae, i.e., O. frigida and O. viridis, or on Cardueae (Asteraceae), i.e., O. bidentata, O. coerulea, and O. virgulata, produce species-specific complex mixtures of autogenous cardenolides. O. melanocephala, which feeds on Doronicum clusii (Senecioneae, Asteraceae), devoid of pyrrolizidine alkaloids (PAs) in its leaves, secretes, at best, traces of cardenolides. Sequestration of host-plant PAs was observed in all the other species when feeding on Senecioneae containing these alkaloids in their leaves. O. cacaliae is the only species that secretes host-derived PA N-oxides and no autogenous cardenolides. Differences were observed in the secretions of specimens collected in various localities, because of local differences in the vegetation. The other species, such as O. elongata, O. intricata, and O. speciosissima, have a mixed defensive strategy and are able both to synthesize de novo cardenolides and to sequester plant PA N-oxides. This allows a great flexibility in defense, especially in O. elongata and O. speciosissima, which feed on both PA and non-PA plants. Populations of these species were found exclusively producing cardenolides, or exclusively sequestering PA N-oxides, or still doing both, depending on the local availability of food-plants. Differences were observed between species in their ability to sequester different plant PA N-oxides and to transform them. Therefore sympatric species demonstrate differences in the composition of their host-derived secretions, also resulting from differences in host-plant preference. Finally, within-population individual differences were observed because of local plant heterogeneity in PAs. To some extent these intrapopulation variations in chemical defense are tempered by mixing diet and by the long-term storage of PA N-oxides in the insect body that are used to refill the defensive glands.
  • Publication
    Accès libre
    A comparison between allozyme data and phenotypic distances from defensive secretion in Oreina leaf-beetles (Chrysomelinae)
    (1994) ;
    Pasteels, Jacques M.
    The genetic relationships between five Oreina species (Chrysomelidae, Coleoptera) were studied. Of these species, four (O. bifrons, O. gloriosa, O. speciosa, O. variabilis) feed on Apiaceae and secrete mixtures of autogenous cardenolides from defensive glands, whilst the other (O. speciosissima) feeds on Asteraceae and is able both to produce cardenolides and to sequester pyrrolizidines N-oxides (PAs). A dendrogram based on the different mixtures of cardenolides produced by the different species agreed with these genetic relationships. In other words, cardenolide mixtures are good taxonomic markers, since the clustering method based on chemical defense produces a branching pattern similar to that based on genetic relationships.
  • Publication
    Accès libre
    Physiological sources of variation in chemical defense of Oreina gloriosa (Coleoptera: Chrysomelidae)
    (1993)
    Eggenberger, F.
    ;
    The defensive secretion of the alpine chrysomelid Oreina gloriosa is a complex mixture of mainly cardenolides and tyrosine betaine. Individually sampled secretions of adult laboratory-reared and field-collected beetles were analyzed by reverse-phase HPLC; 16 secretion components were quantified. Quantities and concentrations of different components were significantly affected by the age, sex, and reproductive status of individual beetles. Aging was correlated with marked increases (up to 4.4-fold) and decreases (up to 2.7-fold) of quantities and concentrations of several components. Differences between the sexes were smaller, but quantities of all components and concentrations of several components were larger in laboratory-reared females than in males. There was less of one component of the secretion in mated than unmated females, but the concentrations of four secretion components were higher (up to 1.6-fold) in mated females.
  • Publication
    Accès libre
    Genetic component of variation in chemical defense of Oreina gloriosa (Coleoptera: Chrysomelidae)
    (1992)
    Eggenberger, F.
    ;
    Defensive secretions of adult Oreina gloriosa, liberated at the surface of the pronotum and elytra, contain a complex mixture of cardenolides, and ethanolamine. Proportions and concentrations of constituents determined by reverse-phase HPLC show considerable variation among individual beetles. Heritabilities of proportions of five main components were estimated by mother-offspring regression providing a validation of the less reliable full-sib correlation estimates. Average heritabilities based on the two methods were 0.51 and 0.58, respectively, estimated by using offspring of two age groups. Regression estimates of 2- and 10-week-old offspring differed significantly for one secretion constituent (RT16). Heritability estimates of concentrations of 16 secretion components were calculated by full-sib correlation analysis. Average heritability was 0.45, indicating a significant genetic component. Estimates did not differ significantly between the two age groups. We also estimated heritabilities of concentrations by a two-way model including data from offspring of both age groups. Heritability estimates based on this model are thought to correspond approximately to estimates based on samples from natural populations. The average of these estimates was lower (h2 =0.31) than the average heritability of each age group separately (h2 =0.45), suggesting a developmental effect on variation in chemical defense of O. gloriosa.