Voici les éléments 1 - 3 sur 3
  • Publication
    Accès libre
    Do induced responses mediate the ecological interactions between the specialist herbivores and phytopathogens of an alpine plant?
    (2011-5) ; ;
    Naisbit, Russell E
    Plants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test for induced responses in wild populations of an alpine plant (Adenostyles alliariae) that possesses constitutive chemical defence (pyrrolizidine alkaloids) and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina cacaliae, and the phytopathogenic rust Uromyces cacaliae). Plants were induced in the field using chemical elicitors of the jasmonic acid (JA) and salicylic acid (SA) pathways and monitored for one month under natural conditions. There was evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed chemical defence suggests that they may be ubiquitous in higher plants.
  • Publication
    Accès libre
    Coping with an antagonist: the impact of a phytopathogenic fungus on the development and behaviour of two species of alpine leaf beetle
    (2007) ; ;
    Naisbit, Russell. E.
    Herbivorous insects and phytopathogenic fungi often share their host plants. This creates a network of direct and indirect interactions, with far-reaching consequences for the ecology and evolution of all three parties. In the Alps, the leaf beetles Oreina elongata and Oreina cacaliae (Coleoptera: Chrysomelidae), and the rust fungus Uromyces cacaliae (Uredinales: Pucciniaceae) are found on the same host plant, Adenostyles alliariae (Asterales: Asteraceae). We compare the impact of rust infection on these two closely-related beetle species, one of which, O. cacaliae, is a specialist on A. alliariae, while the other, O. elongata, moves repeatedly between Adenostyles and an alternative host, Cirsium spinosissimum. Larval performance, feeding preference, oviposition choice and dispersal behaviour were studied in field and laboratory experiments. When reared on rust-infected leaves, larvae of both beetle species had lower growth rates, lower maximum weights and longer development times. Larvae and adults discriminated among diets in feeding trials, showing a preference for discs cut from healthy leaves over those bearing a patch of sporulating rust, those from elsewhere on an infected leaf, and those from an upper leaf on an infected plant. Females of the two species differed in behaviour: in O. cacaliae they favoured healthy leaves for larviposition, while in O. elongata they showed no significant preference during oviposition. In the field, larvae and adults of both species dispersed more rapidly when placed on infected host plants. The results demonstrate that rust infection reduces the quality of the plant as a host for both Oreina species, and they combine the ability to detect systemic infection with the evolution of evasive behaviours. For these beetles, competition with a rust clearly increases the difficulty of survival in the harsh conditions of alpine environments, and may have a profound impact on the evolution of their life history traits and host plant use.
  • Publication
    Accès libre
    Counter-intuitive developmental plasticity induced by host quality
    (2007) ; ;
    Naisbit, Russell. E.
    Adaptation to different hosts plays a central role in the evolution of specialization and speciation in phytophagous insects and parasites, and our ability to experimentally rank hosts by their quality is critical to research to understand these processes. Here we provide a counter-intuitive example in which growth is faster on poor quality hosts. The leaf beetles Oreina elongata and Oreina cacaliae share their host plant with the rust Uromyces cacaliae. Larvae reared on infected Adenostyles alliariae show reduced growth rate, reduced maximum weight and longer development time. However, they normally respond adaptively to the rust's mid-season arrival. When switched during development from healthy to infected leaves, larvae accelerate growth and reduce development time, but pupate at lower body weight. In this novel plant–insect–fungus interaction, infection forms the cue to trade off life-history traits in order to complete development within the brief alpine summer. It represents a novel mode of developmental plasticity, which is likely to be found in other host–parasite systems whenever host quality deteriorates due to multiple infection or ageing. This phenotypic plasticity would modify competition after co-infection and the mutual selection imposed by hosts and parasites, and creates a paradoxical negative correlation between growth rate and environmental quality.