Options
Rahier, Martine
Nom
Rahier, Martine
Affiliation principale
Fonction
Professeure ordinaire
Email
Martine.Rahier@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 4 sur 4
- PublicationAccès libreDo induced responses mediate the ecological interactions between the specialist herbivores and phytopathogens of an alpine plant?(2011-5)
; ; Naisbit, Russell EPlants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test for induced responses in wild populations of an alpine plant (Adenostyles alliariae) that possesses constitutive chemical defence (pyrrolizidine alkaloids) and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina cacaliae, and the phytopathogenic rust Uromyces cacaliae). Plants were induced in the field using chemical elicitors of the jasmonic acid (JA) and salicylic acid (SA) pathways and monitored for one month under natural conditions. There was evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed chemical defence suggests that they may be ubiquitous in higher plants. - PublicationAccès libreCoping with an antagonist: the impact of a phytopathogenic fungus on the development and behaviour of two species of alpine leaf beetle(2007)
; ; Naisbit, Russell. E.Herbivorous insects and phytopathogenic fungi often share their host plants. This creates a network of direct and indirect interactions, with far-reaching consequences for the ecology and evolution of all three parties. In the Alps, the leaf beetles Oreina elongata and Oreina cacaliae (Coleoptera: Chrysomelidae), and the rust fungus Uromyces cacaliae (Uredinales: Pucciniaceae) are found on the same host plant, Adenostyles alliariae (Asterales: Asteraceae). We compare the impact of rust infection on these two closely-related beetle species, one of which, O. cacaliae, is a specialist on A. alliariae, while the other, O. elongata, moves repeatedly between Adenostyles and an alternative host, Cirsium spinosissimum. Larval performance, feeding preference, oviposition choice and dispersal behaviour were studied in field and laboratory experiments. When reared on rust-infected leaves, larvae of both beetle species had lower growth rates, lower maximum weights and longer development times. Larvae and adults discriminated among diets in feeding trials, showing a preference for discs cut from healthy leaves over those bearing a patch of sporulating rust, those from elsewhere on an infected leaf, and those from an upper leaf on an infected plant. Females of the two species differed in behaviour: in O. cacaliae they favoured healthy leaves for larviposition, while in O. elongata they showed no significant preference during oviposition. In the field, larvae and adults of both species dispersed more rapidly when placed on infected host plants. The results demonstrate that rust infection reduces the quality of the plant as a host for both Oreina species, and they combine the ability to detect systemic infection with the evolution of evasive behaviours. For these beetles, competition with a rust clearly increases the difficulty of survival in the harsh conditions of alpine environments, and may have a profound impact on the evolution of their life history traits and host plant use. - PublicationAccès libreCounter-intuitive developmental plasticity induced by host quality(2007)
; ; Naisbit, Russell. E.Adaptation to different hosts plays a central role in the evolution of specialization and speciation in phytophagous insects and parasites, and our ability to experimentally rank hosts by their quality is critical to research to understand these processes. Here we provide a counter-intuitive example in which growth is faster on poor quality hosts. The leaf beetles Oreina elongata and Oreina cacaliae share their host plant with the rust Uromyces cacaliae. Larvae reared on infected Adenostyles alliariae show reduced growth rate, reduced maximum weight and longer development time. However, they normally respond adaptively to the rust's mid-season arrival. When switched during development from healthy to infected leaves, larvae accelerate growth and reduce development time, but pupate at lower body weight. In this novel plant–insect–fungus interaction, infection forms the cue to trade off life-history traits in order to complete development within the brief alpine summer. It represents a novel mode of developmental plasticity, which is likely to be found in other host–parasite systems whenever host quality deteriorates due to multiple infection or ageing. This phenotypic plasticity would modify competition after co-infection and the mutual selection imposed by hosts and parasites, and creates a paradoxical negative correlation between growth rate and environmental quality. - PublicationAccès libreEcological interactions between two species of leaf beetle, a rust fungus, and their host plant(2007)
; Les champignons parasites et les insectes herbivores sont connus pour leur influence négative sur les populations de plantes, affectant leur reproduction, leur croissance, leur survie, et interférant dans leurs relations avec d’autres espèces. En fournissant un logement, une protection et une source de nourriture pour de nombreux organismes, les végétaux représentent un élément essentiel des écosystèmes terrestres dans lesquels ils permettent la rencontre d’organismes aussi différents que des champignons pathogènes et des insectes phytophages. Les relations triangulaires qui naissent de cette proximité peuvent être directes ou indirectes lorsque la plante hôte joue le rôle de médiateur. Les insectes peuvent se nourrir du champignon ou de l’une de ses parties, comme le mycélium ou les structures reproductrices, et de ce fait réduire l’ampleur de l’infection ou de la transmission de la maladie. En revanche, d’autres espèces sont susceptibles de véhiculer des spores infectieuses et d’inoculer de nouvelles plantes. Ici, les champignons et les insectes s’influencent directement, positivement ou négativement, mais leurs relations deviennent indirectes lorsqu’ils engendrent des perturbations chez leur hôte. Une attaque fongique est susceptible de produire des changements dans la qualité de la plante hôte, mais aussi d’y activer des résistances qui peuvent également agir sur les insectes, grâce à des mécanismes de défenses croisés. Ainsi, les plantes participent activement à ces relations en mettant en oeuvre des défenses permanentes ou activables, impliquant des structures morphologiques, des substances chimiques internes ou externes, leur phénologie, ou des stratégies de tolérance. Ce travail est centré sur l’étude des relations directes et indirectes entre la plante Adenostyles alliariae, la rouille Uromyces cacaliae, et deux chrysomèles alpines Oreina elongata et Oreina cacaliae. Dans leur environnement naturel, régit par des conditions difficiles, leur relation prend une importance particulière, principalement due à une période d’activité très courte, mais aussi à cause de la stratégie de défense des chrysomèles alpines, impliquant des composés secondaires (pyrrolizidine alcaloïdes) produits par la plante et séquestrés par ces insectes pour leur propre défense. Dans ce contexte, le nombre de conséquences possibles est accru. L’influence de chacun des protagonistes sur les deux autres fut observée à l’aide d’expériences combinées entre le terrain, le laboratoire, et l’analyse de composés chimiques. Quatre sites différents furent choisis au sein les Alpes suisses et italiennes. Les résultats montrent que des interactions triangulaires influencent nos rotagonistes, avec des effets sur leur comportement, leur phénologie, leur cycle de vie, leurs performances, leur distribution et la dynamique de leurs populations. Ces conséquences sont majoritairement négatives et les rares effets positifs ne fournissent pas d’explication valable à l’apparente continuité de ce système. Néanmoins, un mélange de défenses, d’évitement et de tolérance entre les membres de ce système semble être à la base de leur coexistence., Independently, both fungal disease and herbivorous insects are considered to have major impacts on plant populations, affecting growth, survival, and reproduction, as well as modifying their interactions with other species. By providing habitats, protection, and food for numerous species, plants form an essential component of terrestrial ecosystems and constitute the convergent point for interactions between many groups, including plant pathogenic fungi and phytophagous insects. The three-way interactions resulting from this junction may be direct, plant-mediated, or both. Insects can feed on fungal mycelia and reproductive structures, reducing the infection and its transmission, or transport infectious spores to inoculate new plants. Fungi and insects exercise an influence, positive or negative, directly on each other. The relationships can be indirect if attack transforms the host plant, such as when fungal infection induces plant resistance against fungal attack, but in doing so also induces defences against herbivores by cross-effect mechanisms, and produces changes in host plant quality. The plants participate actively through their permanent and induced defences, involving morphological structures, internal, external, and emitted chemical compounds, phenology, or tolerance. This study focus on the direct and indirect interactions between the host plant Adenostyles alliariae, systemic infections of the rust Uromyces cacaliae, and attacks by the alpine leaf beetles Oreina elongata and Oreina cacaliae. In the harsh conditions of their high alpine habitats, their relations are likely to be particularly intense, due to the very short period of activity as well as to the specificity of the defence strategy used by the Oreina leaf beetles. The involvement of pyrrolizidine alkaloids (PAs), secondary compounds produced by the plant and sequestered by the leaf beetles for their own defence, increases the potential consequences of these three-way interactions beyond those typically considered. Field trials in four populations across the Swiss and Italian Alps were combined with laboratory experiments and chemical analyses to examine the influence of each protagonist on the others. The results show that the tripartite interactions affect all three participants, with implications for their behaviour, phenology, life cycle, fitness, population dynamics, and distribution. Negative impacts seem to prevail, while concrete positive interactions are weak and not sufficient to explain the apparent continuity of this system. Nonetheless, a mix of defences, avoidance and tolerance to the presence of the other members seems to be basis of their coexistence.