Options
Rahier, Martine
Résultat de la recherche
Predation of pyrrolizidine alkaloid defended oreina leaf beetles by harvestmen (Arachnida : Opiliones) : How do they tolerate toxic alkaloids ?
2003, Hartmann, Thomas, Haggstrom, Hakan, Theuring, Claudine, Lindigkeit, Rainer, Rahier, Martine
Sequestration, Maintenance, and Tissue Distribution of Pyrrolizidine Alkaloid N-Oxides in Larvae of Two Oreina Species
1999, Ehmke, Adelheid, Rahier, Martine, Pasteels, Jacques M., Theuring, Claudine, Hartmann, Thomas
Oreina cacaliae and O. speciosissima are leaf beetles that, as larvae and adults, sequester pyrrolizidine alkaloid N-oxides (PAs) as defensive compounds from their host plants Adenostyles alliariae and Senecio nemorensis. As in most Oreina species, O. speciosissima is also defended by autogenously produced cardenolides (mixed defensive strategy), whereas O. cacaliae does not synthesize cardenolides and is exclusively dependent on host-plant-acquired PAs (host-derived defense). Adults of the two Oreina species were found to have the same PA storage capacity. The larvae, however, differ; larvae of O. speciosissima possess a significantly lower capability to store PAs than O. cacaliae. The ability of Oreina larvae to sequester PAs was studied by using tracer techniques with 14C-labeled senecionine N-oxide. Larvae of the two species efficiently take up [14C]senecionine N-oxide from their food plants and store the alkaloid as N-oxide. In O. cacaliae, there is a slow but continuous loss of labeled senecionine N-oxide. This effect may reflect the equilibrium between continuous PA uptake and excretion, resulting in a time-dependent tracer dilution. No noticeable loss of labeled alkaloid is associated with molting. Senecionine N-oxide is detectable in all tissues. The hemolymph is, with ca. 50–60% of total PAs, the major storage compartment, followed by the integument, with ca 30%. The alkaloid concentration in the hemolymph is approximately sixfold higher than in the solid tissues. The selectivity of PA sequestration in larvae is comparable to PA sequestration in the bodies of adult beetles.
Detoxification of pyrrolizidine alkaloids by the harvestman Mitopus morio (Phalangidae) a predator of alkaloid defended leaf beetles
2003, Hartmann, Thomas, Häggström, Håkan, Theuring, Claudine, Lindigkeit, Rainer, Rahier, Martine
The harvestman Mitopus morio (Phalangidae) is a generalist predator. It is known to prey on larvae of the chrysomelid leaf beetle Oreina cacaliae defended by plant acquired pyrrolizidine alkaloids (PAs). Tracer feeding experiments were performed to determine how harvestmen tolerate protoxic PAs. Minced meat containing either [14C]senecionine or [14C]senecionine N-oxide was fed to M. morio and subsequently feces and bodies were analyzed. Labeled alkaloid N-oxide remained stable and was eliminated almost unaltered with the feces; only 10% was recovered as tertiary PA. In contrast, approximately 80% of labeled tertiary alkaloid (senecionine) ingested with the diet was N-oxidized and eliminated; the remaining 20% consisted of unchanged senecionine and a polar metabolite of unknown structure. Harvestmen process their diet by excreting digestive juice, indicated by bleaching of the meat color. Analysis of the processed diet revealed some N-oxidation of [14C]senecionine, suggesting the gut as the site of N-oxidation. Analysis of the bodies of harvestmen 80 hours after the tracer feeding pulse revealed only trace amounts of the polar metabolite. Neither senecionine nor its N-oxide could be detected in the body extracts. The results are discussed in relation to the strategies of PA adapted insects to avoid accumulation of tertiary PAs in living tissues.
Selective sequestration and metabolism of plant derived pyrrolizidine alkaloids by chrysomelid leaf beetles
1997, Hartmann, Thomas, Witte, Ludger, Ehmke, Adelheid, Theuring, Claudine, Rahier, Martine, Pasteels, Jacques M.
Pyrrolizidine alkaloids (PAs) are assumed to function as plant defence compounds against herbivory. A number of adapted insects are known to sequester plant derived PAs for their own benefit. Here we summarize the chemical interactions between leaf beetles of the genus Oreina (Coleoptera, Chrysomelidae) and their host plants Adenostyles spp., Senecio nemorensis, and S. fuchsii (Asteraceae, tribe Senecioneae). Seneciphylline N-oxide and senecionine N-oxide, the main PAs of Adenostyles, are sequestered in the bodies and exocrine defensive glands of the leaf beetles. The comparison with the PA patterns of the Senecio host plant indicates a selective PA uptake. The uptake into the body (hemolymph) is less specific, whereas the translocation into the defensive glands is highly specific. Only the N-oxides of macrocyclic retronecine esters of the senecionine type are found in significant amounts in the defensive secretions. Many other PAs such as monoesters and open-chain diesters as well as PAs of other structural types (e.g. monocrotaline N-oxide and senkirkine) are not transferred into the defensive glands. Leaf beetles sequester PAs exclusively as N-oxides. A novel PA not found in the food plants was detected in the defensive secretions of Oreina elongata; it was identified as 13,19-expoxisenecionine N-oxide (oreine), the epoxidation product of seneciphylline N-oxide. Besides this transformation, leaf beetles are able to catalyse further transformations such as the O-dealkylation of heliotrine N-oxide to rinderine N-oxide and the O-deacetylation of acetylseneciphylline N-oxide to seneciphylline N-oxide. The plant-beetle interactions are discussed in the functional context of PAs as powerful plant defensive chemicals.
Biochemical strategy of sequestration of pyrrolizidine alkaloids by adults and larvae of chrysomelid leaf beetles
1999, Hartmann, Thomas, Theuring, Claudine, Jürgen Schmidt, Rahier, Martine, Pasteels, Jacques M.
Tracer feeding experiments with 14C-labeled senecionine and senecionine N-oxide were carried out to identify the biochemical mechanisms of pyrrolizidine alkaloid sequestration in the alkaloid-adapted leaf beetle Oreina cacaliae (Chrysomelidae). The taxonomically closely related mint beetle (Chrysolina coerulans) which in its life history never faces pyrrolizidine alkaloids was chosen as a ‘biochemically naive’ control. In C. coerulans ingestion of the two tracers resulted in a transient occurrence of low levels of radioactivity in the hemolymph (1–5% of radioactivity fed). With both tracers, up to 90% of the radioactivity recovered from the hemolymph was senecionine. This indicates reduction of the alkaloid N-oxide in the gut. Adults and larvae of O. cacaliae sequester ingested senecionine N-oxide almost unchanged in their bodies (up to 95% of sequestered total radioactivity), whereas the tertiary alkaloid is converted into a polar metabolite (up to 90% of total sequestered radioactivity). This polar metabolite, which accumulates in the hemolymph and body, was identified by LC/MS analysis as an alkaloid glycoside, most likely senecionine O-glucoside. The following mechanism of alkaloid sequestration in O. cacaliae is suggested to have developed during the evolutionary adaptation of O. cacaliae to its alkaloid containing host plant: (i) suppression of the gut specific reduction of the alkaloid N-oxides, (ii) efficient uptake of the alkaloid N-oxides, and (iii) detoxification of the tertiary alkaloids by O-glucosylation. The biochemical mechanisms of sequestration of pyrrolizidine alkaloid N-oxides in Chysomelidae leaf beetles and Lepidoptera are compared with respect to toxicity, safe storage and defensive role of the alkaloids.