Options
Rahier, Martine
Nom
Rahier, Martine
Affiliation principale
Fonction
Professeure ordinaire
Email
Martine.Rahier@unine.ch
Identifiants
Résultat de la recherche
4 Résultats
Voici les éléments 1 - 4 sur 4
- PublicationAccès libreSequestration, Maintenance, and Tissue Distribution of Pyrrolizidine Alkaloid N-Oxides in Larvae of Two Oreina Species(1999)
;Ehmke, Adelheid; ;Pasteels, Jacques M. ;Theuring, ClaudineHartmann, ThomasOreina cacaliae and O. speciosissima are leaf beetles that, as larvae and adults, sequester pyrrolizidine alkaloid N-oxides (PAs) as defensive compounds from their host plants Adenostyles alliariae and Senecio nemorensis. As in most Oreina species, O. speciosissima is also defended by autogenously produced cardenolides (mixed defensive strategy), whereas O. cacaliae does not synthesize cardenolides and is exclusively dependent on host-plant-acquired PAs (host-derived defense). Adults of the two Oreina species were found to have the same PA storage capacity. The larvae, however, differ; larvae of O. speciosissima possess a significantly lower capability to store PAs than O. cacaliae. The ability of Oreina larvae to sequester PAs was studied by using tracer techniques with 14C-labeled senecionine N-oxide. Larvae of the two species efficiently take up [14C]senecionine N-oxide from their food plants and store the alkaloid as N-oxide. In O. cacaliae, there is a slow but continuous loss of labeled senecionine N-oxide. This effect may reflect the equilibrium between continuous PA uptake and excretion, resulting in a time-dependent tracer dilution. No noticeable loss of labeled alkaloid is associated with molting. Senecionine N-oxide is detectable in all tissues. The hemolymph is, with ca. 50–60% of total PAs, the major storage compartment, followed by the integument, with ca 30%. The alkaloid concentration in the hemolymph is approximately sixfold higher than in the solid tissues. The selectivity of PA sequestration in larvae is comparable to PA sequestration in the bodies of adult beetles. - PublicationAccès libreHost-Plant Switches and the Evolution of Chemical Defense and Life History in the Leaf Beetle Genus Oreina(1996)
;Dobler, Susanne ;Mardulyn, Patrick ;Pasteels, Jacques M.Insect-plant interactions have played a prominent role in investigating phylogenetic constraints in the evolution of ecological traits. The patterns of host association among specialized insects have often been described as highly conservative, yet not all specialized herbivorous insect lineages display the same degree of fidelity to their host plants. In this paper, we present an estimate of the evolutionary history of the leaf beetle genus Oreina. This genus displays an amazing flexibility in several aspects of its ecology and life history (1) host plant switches in Oreina occurred between plant families or distantly related tribes within families and thereby to more distantly related plants than in several model systems that have contributed to the idea of parallel cladogenesis; (2) all species of the genus are chemically defended, but within the genus a transition between autogenous production of defensive toxins and sequestration of secondary plant compounds has occurred; and (3) reproductive strategies in the genus range from oviparity to viviparity including all intermediates that could allow the gradual evolution of viviparity Cladistic analysis of 18 allozyme loci found two most parsimonious trees that differ only in the branching of one species. According to this phylogeny estimate, Oreina species were originally associated with Asteraceae, with an inclusion of Apiaceae in the diet of one oligophagous species and an independent switch to Apiaceae in a derived clade. The original mode of defense appears to be the autogenous production of cardenolides as previously postulated; the additional sequestration of pyrrolizidine alkaloids could have either originated at the base of the genus or have arisen three times independently in all species that switched to plants containing these compounds. Viviparity apparently evolved twice in the genus, once without matrotrophy, through a retention of the eggs inside the female's oviducts, and once in combination with matrotrophy. We hypothesize that the combination of autogenous defense and a life history that involves mobile externally feeding larvae allowed these beetles to switch host plants more readily than has been reported for highly conservative systems. - PublicationAccès libreDistribution of autogenous and host-derived chemical defenses in Oreina leaf beetles (Coleoptera: Chrysomelidae)(1995)
;Pasteels, Jacques M. ;Dobler, Susanne; ;Ehmke, Adelheid ;Hartmann, Thomas ;Pasteels, Jacques M. ;Dobler, Susanne ;Ehmke, AdelheidHartmann, ThomasThe pronotal and elytral defensive secretions of 10 Oreina species were analyzed. Species feeding on Apiaceae, i.e., O. frigida and O. viridis, or on Cardueae (Asteraceae), i.e., O. bidentata, O. coerulea, and O. virgulata, produce species-specific complex mixtures of autogenous cardenolides. O. melanocephala, which feeds on Doronicum clusii (Senecioneae, Asteraceae), devoid of pyrrolizidine alkaloids (PAs) in its leaves, secretes, at best, traces of cardenolides. Sequestration of host-plant PAs was observed in all the other species when feeding on Senecioneae containing these alkaloids in their leaves. O. cacaliae is the only species that secretes host-derived PA N-oxides and no autogenous cardenolides. Differences were observed in the secretions of specimens collected in various localities, because of local differences in the vegetation. The other species, such as O. elongata, O. intricata, and O. speciosissima, have a mixed defensive strategy and are able both to synthesize de novo cardenolides and to sequester plant PA N-oxides. This allows a great flexibility in defense, especially in O. elongata and O. speciosissima, which feed on both PA and non-PA plants. Populations of these species were found exclusively producing cardenolides, or exclusively sequestering PA N-oxides, or still doing both, depending on the local availability of food-plants. Differences were observed between species in their ability to sequester different plant PA N-oxides and to transform them. Therefore sympatric species demonstrate differences in the composition of their host-derived secretions, also resulting from differences in host-plant preference. Finally, within-population individual differences were observed because of local plant heterogeneity in PAs. To some extent these intrapopulation variations in chemical defense are tempered by mixing diet and by the long-term storage of PA N-oxides in the insect body that are used to refill the defensive glands. - PublicationAccès libreA comparison between allozyme data and phenotypic distances from defensive secretion in Oreina leaf-beetles (Chrysomelinae)(1994)
; Pasteels, Jacques M.The genetic relationships between five Oreina species (Chrysomelidae, Coleoptera) were studied. Of these species, four (O. bifrons, O. gloriosa, O. speciosa, O. variabilis) feed on Apiaceae and secrete mixtures of autogenous cardenolides from defensive glands, whilst the other (O. speciosissima) feeds on Asteraceae and is able both to produce cardenolides and to sequester pyrrolizidines N-oxides (PAs). A dendrogram based on the different mixtures of cardenolides produced by the different species agreed with these genetic relationships. In other words, cardenolide mixtures are good taxonomic markers, since the clustering method based on chemical defense produces a branching pattern similar to that based on genetic relationships.