Options
Rahier, Martine
Nom
Rahier, Martine
Affiliation principale
Fonction
Professeure ordinaire
Email
Martine.Rahier@unine.ch
Identifiants
Résultat de la recherche
5 Résultats
Voici les éléments 1 - 5 sur 5
- PublicationAccès libreLocal adaptation and ecological genetics of host-plant specialization in a leaf beetle(2003)
;Ballabeni, Pierluigi ;Gotthard, Karl ;Kayumba, AlineThe tendency of insect species to evolve specialization to one or a few plant species is probably a major reason for the remarkable diversity of herbivorous insects. The suggested explanations for this general trend toward specialization include a range of evolutionary mechanisms, whose relative importance is debated. Here we address two potentially important mechanisms: (i) how variation in the geographic distribution of host use may lead to the evolution of local adaptation and specialization; (ii) how selection for specialization may lead to the evolution of trade-offs in performance between different hosts. We performed a quantitative genetic experiment of larval performance in three different populations of the alpine leaf beetle Oreina elongata reared on two of its main host plants. Due to differences in host availability, each population represents a distinctly different selective regime in terms of host use including selection for specialization on one or the other host as well as selection for utilizing both hosts during the larval stage.
The results suggest that selection for specialization has lead to some degree of local adaptations in host use: both single-host population had higher larval growth rate on their respective native host plant genus, while there was no difference between plant treatments in the two-host population. However, differences between host plant treatments within populations were generally small and the degree of local adaptation in performance traits seems to be relatively limited. Genetic correlations in performance traits between the hosts ranged from zero in the two-host population to significantly positive in the single-host populations. This suggests that selection for specialization in single host populations typically also increased performance on the alternative host that is not naturally encountered. Moreover, the lack of a positive genetic correlation in the two host-population give support for the hypothesis that performance trade-offs between two host plants may typically evolve when a population have adapted to both these plants. We conclude that although there is selection for specialization in larval performance traits it seems as if the genetic architecture of these traits have limited the divergence between populations in relative performance on the two hosts. - PublicationAccès libreA quantitative genetic analysis of leaf beetle larval performance on two natural hosts: including a mixed diet(2001)
;Ballabeni, PierluigiPublished quantitative genetic studies of larval performance on different host plants have always compared performance on one host species or genotype vs. performance on another species or genotype. The fact that some insects may feed on more than one plant species during their development has been neglected. We executed a quantitative genetic analysis of performance with larvae of the leaf beetle Oreinaelongata, raised on each of two sympatric host plants or on a mixture of them. Growth rate was higher for larvae feeding on Adenostylesalliariae, intermediate on the mixed diet and lowest on Cirsium spinosissimum. Development time was shortest on A. alliariae, intermediate on mixed diet and longest on C. spinosissimum. Survival was higher on the mixed diet than on both pure hosts. Genetic variation was present for all three performance traits but a genotype by host interaction was found only for growth rate. However, the reaction norms for growth rate are unlikely to evolve towards an optimal shape because of a lack of heritability of growth rate in each single environment. We found no negative genetic correlations for performance traits among hosts. Therefore, our results do not support a hypothesis predicting the existence of between-host trade-offs in performance when both hosts are sympatric with an insect population. We conclude that the evolution of host specialized genotypes is unlikely in the study population. - PublicationAccès libreSpatial proximity between two host plant species influences oviposition and larval distribution in a leaf beetle(2001)
;Ballabeni, Pierluigi ;Conconi, Davide ;Gateff, SophieEverything else being equal, insect herbivores can be expected to oviposit on host plants that provide the qualitatively and quantitatively best food for larvae. However, the selection of a plant for oviposition may be influenced by such ecological factors as natural enemies, host distribution, host patch size or host patch density. We performed a field study to test whether spatial proximity between two host plant species influences the oviposition patterns and larval distribution of the alpine leaf beetle Oreina elongata. In the population studied, O. elongata oviposits and feeds on two host plants, that belong to the same family (Asteraceae): Adenostyles alliariae and Cirsiumspinosissimum. The first species contains pyrrolizidine alkaloids that are sequestered by the beetle as a chemical defence, whereas the second plant does not contain any alkaloids but has hairy and spiny leaves that might give some mechanical protection to beetle larvae.
During two consecutive summers, we quantified oviposition and larval distribution on randomly chosen C. spinosissimum that grew spatially isolated from A. alliariae, on C. spinosissimum that grew in leaf contact with A. alliariae and on A. alliariae that grew in leaf contact with C. spinosissimum (isolated A. alliariae was not considered, because it is rare in the study population). In both years, more eggs were laid on C. spinosissimum than on A. alliariae and more on those C. spinosissimum that were growing close to A. alliariae than on those growing isolated. Large numbers of larvae moved from C. spinosissimum to A. alliariae during the season. Patch size did not influence egg and larval numbers. Eggs survived better on C. spinosissimum than on A. alliariae in the field. The data suggest that C. spinosissimum may provide eggs with better protection against stormy weather. In a separate study of the same population, we found that larval performance was better on A. alliariae than on C. spinosissimum. Our present data suggest that O. elongata preferentially oviposits on plants of the species that maximizes egg survival and that grow in close proximity to plants of the species that provides better food and chemical defence. - PublicationAccès libreDoes enemy-free space for eggs contribute to a leaf beetle's oviposition preference for a nutritionally inferior host plant?(2001)
;Ballabeni, Pierluigi ;Wlodarczyk,. M.1. Natural enemies are likely to influence the interactions between herbivorous insects and their host plants. In particular, selection exerted by natural enemies could favour host-plant switches and cause, or maintain, oviposition preference for a host species that is nutritionally inferior to another acceptable host.
2. In a previous study, it was shown that larvae of the leaf beetle Oreina elongata perform better on Adenostyles alliariae (Asteraceae) than on Cirsium spinosissimum (Asteraceae). Moreover, A. alliariae provides larval and adult beetles with sequestrable chemical defences. However, in the field, egg densities are much higher on C. spinosissimum than on adjacent A. alliariae.
3. In this study, it was investigated whether this oviposition pattern could be maintained by C. spinosissimum, providing the eggs of O. elongata with better protection from natural enemies. In a field experiment, the survival of eggs was quantified on plants of each of the two species, with and without enemy exclusion.
4. Egg survival was equal for both host species when enemies were excluded from the plants, but it was higher on C. spinosissimum than on A. alliariae when enemies were allowed to the plants. It was also experimentally tested whether the higher egg densities observed in the field on C. spinosissimum are actually due to oviposition preference by the beetle. In a no-choice test, females laid more eggs on C. spinosissimum than on A. alliariae.
5. It can thus be confirmed that C. spinosissimum is really preferred for oviposition and it is concluded that this preference is likely to be maintained, at least partly, by a higher egg survival on C. spinosissimum due to enemy-free space provided by this host plant. - PublicationAccès librePerformance of leaf beetle larvae on sympatric host and non-host plants(2000)
;Ballabeni, PierluigiStudies asking the ability of insects to utilize novel host plants often use novel hosts that are allopatric with the insect population under investigation. However, since the outcomes of species interactions are often site-specific, such studies cannot tell us whether a plant would actually be used by a given insect population if the plant grew sympatrically with it. We therefore performed a quantitative genetics experiment to analyse the performance of larvae of the leaf beetle Oreina elongata Suffrian (Coleoptera: Chrysomelidae, Chrysomelinae) on two host and three non-host plants, collected from a site where insects and plants co-occur in the Western Alps. When raised on the non-host Petasites albus (L.), larvae were able to survive equally well as on the two hosts, Adenostyles alliariae (Gouan) and Cirsium spinosissimum (L.), whereas they did not survive on the two other non-hosts, Peucedanum ostruthium (L.) and Rumex alpinus L. On P. albus, growth rate was slightly lower and development time slightly longer than on the two hosts. We found a genotype by environment interaction only for growth rate but not for development time and survival. However, the shape of the reaction norms of growth rates suggests that it is unlikely that selection could favour the inclusion of P. albus into the host range of the study population.Studies asking the ability of insects to utilize novel host plants often use novel hosts that are allopatric with the insect population under investigation. However, since the outcomes of species interactions are often site-specific, such studies cannot tell us whether a plant would actually be used by a given insect population if the plant grew sympatrically with it. We therefore performed a quantitative genetics experiment to analyse the performance of larvae of the leaf beetle Oreina elongata Suffrian (Coleoptera: Chrysomelidae, Chrysomelinae) on two host and three non-host plants, collected from a site where insects and plants co-occur in the Western Alps. When raised on the non-host Petasites albus (L.), larvae were able to survive equally well as on the two hosts, Adenostyles alliariae (Gouan) and Cirsium spinosissimum (L.), whereas they did not survive on the two other non-hosts, Peucedanum ostruthium (L.) and Rumex alpinus L. On P. albus, growth rate was slightly lower and development time slightly longer than on the two hosts. We found a genotype by environment interaction only for growth rate but not for development time and survival. However, the shape of the reaction norms of growth rates suggests that it is unlikely that selection could favour the inclusion of P. albus into the host range of the study population.Studies asking the ability of insects to utilize novel host plants often use novel hosts that are allopatric with the insect population under investigation. However, since the outcomes of species interactions are often site-specific, such studies cannot tell us whether a plant would actually be used by a given insect population if the plant grew sympatrically with it. We therefore performed a quantitative genetics experiment to analyse the performance of larvae of the leaf beetle Oreina elongata Suffrian (Coleoptera: Chrysomelidae, Chrysomelinae) on two host and three non-host plants, collected from a site where insects and plants co-occur in the Western Alps. When raised on the non-host Petasites albus (L.), larvae were able to survive equally well as on the two hosts, Adenostyles alliariae (Gouan) and Cirsium spinosissimum (L.), whereas they did not survive on the two other non-hosts, Peucedanum ostruthium (L.) and Rumex alpinus L. On P. albus, growth rate was slightly lower and development time slightly longer than on the two hosts. We found a genotype by environment interaction only for growth rate but not for development time and survival. However, the shape of the reaction norms of growth rates suggests that it is unlikely that selection could favour the inclusion of P. albus into the host range of the study population.