Voici les éléments 1 - 3 sur 3
  • Publication
    Accès libre
    Compact rubidium-stabilized multi-frequency reference source in the 1.55-μm region
    Combining light modulation and frequency conversion techniques, a compact and simple frequency-stabilized optical frequency comb spanning over 45 nm in the 1.56-μm wavelength region is demonstrated. It benefits from the high-frequency stability achievable from rubidium atomic transitions at 780 nm probed in a saturation absorption scheme, which is transferred to the 1.56-μm spectral region via a second-harmonic generation process. The optical frequency comb is generated by an electro-optic modulator enclosed in a Fabry–Perot cavity that is injected by the fundamental frequency stabilized laser. Frequency stability better than 2 kHz has been demonstrated on time scales between 1000 s and 2 days both at 1560 nm, twice the rubidium wavelength, and for a comb line at 1557 nm.
  • Publication
    Accès libre
    All‑fiber versatile laser frequency reference at 2 μm for CO2 space‑borne lidar applications
    We present a frequency stabilized laser at 2051 nm based on a versatile all-fibered stabilization setup. A modulation sideband locking technique is implemented to lock the laser at a controlled frequency detuning from the center of the CO2 R(30) transition envisaged for space-borne differential absorption lidar (DIAL) applications. This method relies on the use of a compact all-fibered gas reference cell that makes the setup robust and immune to mechanically induced optical misalignments. The gas cell is fabricated using a hollow-core photonic crystal fiber filled with pure CO2 at a low pressure of ~20 mbar and hermetically sealed at both ends by splices to silica fibers. Different configurations of this fibered cell have been developed and are presented. With this technique, frequency stabilities below 40 kHz at 1-s integration time and <100 kHz up to 1000-s averaging time were achieved for a laser detuning by around 1 GHz from the center of the CO2 transition. These stabilities are compliant with typical requirements for the reference seed source for a space CO2 DIAL.
  • Publication
    Accès libre
    Compact rubidium-stabilized multi-frequency reference source in the 1.55-μm region
    Combining light modulation and frequency conversion techniques, a compact and simple frequency-stabilized optical frequency comb spanning over 45 nm in the 1.56- μm wavelength region is demonstrated. It benefits from the high-frequency stability achievable from rubidium atomic transitions at 780 nm probed in a saturation absorption scheme, which is transferred to the 1.56- μm spectral region via a second-harmonic generation process. The optical frequency comb is generated by an electro-optic modulator enclosed in a Fabry–Perot cavity that is injected by the fundamental frequency stabilized laser. Frequency stability better than 2 kHz has been demonstrated on time scales between 1000 s and 2 days both at 1560 nm, twice the rubidium wavelength, and for a comb line at 1557 nm.