Options
McMullin, Andrew
Nom
McMullin, Andrew
Affiliation principale
Identifiants
Résultat de la recherche
Voici les éléments 1 - 2 sur 2
- PublicationAccès libreStandardising Visual Control Devices for Tsetse Flies: Central and West African Species Glossina palpalis palpalis(2014-1)
;Kaba, Dramane ;Zacarie, Tusevo ;Makumyaviri M’Pondi, Alexis ;Njiokou, Flobert ;Bosson-Vanga, Henriette; ; ;Mihok, SteveBackground: Glossina palpalis palpalis (G. p. palpalis) is one of the principal vectors of sleeping sickness and nagana in Africa with a geographical range stretching from Liberia in West Africa to Angola in Central Africa. It inhabits tropical rain forest but has also adapted to urban settlements. We set out to standardize a long-lasting, practical and cost-effective visually attractive device that would induce the strongest landing response by G. p. palpalis for future use as an insecticideimpregnated tool in area-wide population suppression of this fly across its range. Methodology/Principal Findings: Trials were conducted in wet and dry seasons in the Ivory Coast, Cameroon, the Democratic Republic of Congo and Angola to measure the performance of traps (biconical, monoconical and pyramidal) and targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used as a practical enumerator at these remote locations to compare landing efficiencies of devices. Independent of season and country, both phthalogen blue-black and blue-black-blue 1 m2 targets covered with adhesive film proved to be as good as traps in phthalogen blue or turquoise blue for capturing G. p. palpalis. Trap efficiency varied (8–51%). There was no difference between the performance of blue-black and blue-blackblue 1 m2 targets. Baiting with chemicals augmented the overall performance of targets relative to traps. Landings on smaller phthalogen blue-black 0.25 m2 square targets were not significantly different from either 1 m2 blue-black-blue or blue-black square targets. Three times more flies were captured per unit area on the smaller device. Conclusions/Significance: Blue-black 0.25 m2 cloth targets show promise as simple cost effective devices for management of G. p. palpalis as they can be used for both control when impregnated with insecticide and for population sampling when covered with adhesive film. - PublicationMétadonnées seulementStandardizing Visual Control Devices for Tsetse Flies: East African Species Glossina swynnertoni(2013-2)
;Mramba, Furaha ;Oloo, Francis ;Byamungu, Mechtilda; ; ; Mihok, SteveBackground: Here we set out to standardize long-lasting, visually-attractive devices for Glossina swynnertoni, a vector of both human and animal trypanosomiasis in open savannah in Tanzania and Kenya, and in neighbouring conservation areas used by pastoralists. The goal was to determine the most practical device/material that would induce the strongest landing response in G. swynnertoni for use in area-wide population suppression of this fly with insecticide-impregnated devices. Methods and Findings: Trials were conducted in wet and dry seasons in the Serengeti and Maasai Mara to measure the performance of traps and targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used as a simple enumerator at these remote locations to compare trapping efficiencies of devices. Independent of season or presence of chemical baits, targets in phthalogen blue or turquoise blue cloth with adhesive film were the best devices for capturing G. swynnertoni in all situations, catching up to 19 times more flies than pyramidal traps. Baiting with chemicals did not affect the relative performance of devices. Fly landings were two times higher on 1 m2 blue-black targets as on pyramidal traps when equivalent areas of both were covered with adhesive film. Landings on 1 m2 blue-black targets were compared to those on smaller phthalogen blue 0.5 m2 all-blue or blue-black-blue cloth targets, and to landings on all-blue plastic 0.32–0.47 m2 leg panels painted in phthalogen blue. These smaller targets and leg panels captured equivalent numbers of G. swynnertoni per unit area as bigger targets. Conclusions: Leg panels and 0.5 m2 cloth targets show promise as cost effective devices for management of G. swynnertoni as they can be used for both control (insecticide-impregnated cloth) and for sampling (rigid plastic with insect glue or adhesive film) of populations.