Voici les éléments 1 - 2 sur 2
  • Publication
    Métadonnées seulement
    Barometric Effect in Vapor-Cell Atomic Clocks
    Vapor-cell atomic clocks are compact and high-performance frequency references employed in various appli-cations ranging from telecommunication to global positioningsystems. Environmental sensitivities are often the main sourcesof long-term instabilities of the clock frequency. Among thesesensitivities, the environmental pressure shift describes the clockfrequency change with respect to the environmental pressurevariations. We report here on our theoretical and experimentalanalysis of the environmental pressure shift on rubidium atomicfrequency standards (RAFSs) operated under open atmosphere.By using an unsealed high-performance laser-pumped rubidiumstandard, we demonstrate that the deformation of the vapor-cell volume induced by the environmental pressure changes(i.e., barometric effect) is the dominant environmental pressureshift in a standard laboratory environment. An experimentalbarometric coefficient of 8.2×10−14/hPa is derived, in goodagreement with theory and with previously reported measure-ments of frequency shifts of RAFS operated when transiting tovacuum.
  • Publication
    Métadonnées seulement
    Rb-stabilized laser at 1572 nm for CO2 monitoring
    We have developed a compact rubidium-stabilized laser system to serve as optical frequency reference in the 1.55-m wavelength region, in particular for CO2 monitoring at 1572 nm. The light of a fiber-pigtailed distributed feedback (DFB) laser emitting at 1560 nm is frequency-doubled and locked to a sub-Doppler rubidium transition at 780 nm using a 2-cm long vapor glass cell. Part of the DFB laser light is modulated with an electro-optical modula-tor enclosed in a Fabry-Perot cavity, generating an optical frequency comb with spectral cover-age extending from 1540 nm to 1580 nm. A second slave DFB laser emitting at 1572 nm and offset-locked to one line of the frequency comb shows a relative frequency stability of 1·10-11at 1 s averaging time and <4·10-12 from 1 hour up to 3 days.