Voici les éléments 1 - 3 sur 3
  • Publication
    Métadonnées seulement
    Using DNA-barcoding for sorting out protist species complexes: A case study of the Nebela tincta-collaris-bohemica group (Amoebozoa; Arcellinida, Hyalospheniidae)
    (2013) ;
    Gomaa, Fatma
    ;
    ;
    Heger, Thierry J.
    ;
    Species identification by means of morphology is often problematic in protists. Nebela tincta-collaris-bohemica (Arcellinida) is a species complex of small to medium-sized (ca. 100 mu m) testate amoebae common in peat bogs and forest soils. The taxonomic validity of characters used to define species within this group is debated and causes confusion in studies of biogeography, and applications in palaeoecology. We examined the relationship between morphological and genetic diversity within this species complex by combined analyses of light microscopy imaging and Cytochrome Oxidase Subunit 1(COI) sequences obtained from the same individual amoeba cells. Our goals were (1) to clarify the taxonomy and the phylogenetic relationships within this group, and (2) to evaluate if individual genotypes corresponded to specific morphotypes and the extent of phenotypic plasticity. We show here that small variations in test morphology that have been often overlooked by traditional taxonomy correspond to distinct haplotypes. We therefore revise the taxonomy of the group. We redefine Nebela tincta (Leidy) Kosakyan et Lara and N. collaris (Ehrenberg 1848) Kosakyan et Gomaa, change N. tincta var. rotunda Penard to N. rotunda (Penard 1890), describe three new species: N. guttata n. sp. Kosakyan et Lara, N. pechorensis n. sp. Kosakyan et Mitchell, and N. aliciae n. sp. Mitchell et Lara. (C) 2012 Elsevier GmbH. All rights reserved.
  • Publication
    Accès libre
    One Alga to Rule them All: Unrelated Mixotrophic Testate Amoebae (Amoebozoa, Rhizaria and Stramenopiles) Share the Same Symbiont (Trebouxiophyceae)
    Gomaa, Fatma
    ;
    ;
    Heger, Thierry J
    ;
    Corsaro, Daniele
    ;
    ;
    Endosymbiosis is a central and much studied process in the evolution of eukaryotes. While plastid evolution in eukaryotic algae has been extensively studied, much less is known about the evolution of mixotrophy in amoeboid protists, which has been found in three of the five super groups of Eukaryotes. We identified the green endosymbionts in four obligate mixotrophic testate amoeba species belonging to three major eukaryotic clades, Hyalosphenia papilio and Heleopera sphagni (Amoebozoa: Arcellinida), Placocista spinosa (Rhizaria: Euglyphida), and Archerella flavum (Stramenopiles: Labyrinthulomycetes) based on rbcL (ribulose-1,5-diphosphate carboxylase/oxygenase large subunit) gene sequences. We further investigated whether there were different phylotypes of algal endosymbionts within single H. papilio cells and the degree of host-symbiont specificity by amplifying two genes: COI (mitochondrial cytochrome oxydase subunit 1) from the testate amoeba host, and rbcL from the endosymbiont. Results show that all studied endosymbionts belong to genus Chlorella sensu stricto, closely related to Paramecium bursaria Chlorella symbionts, some lichen symbionts and also several free-living algae. Most rbcL gene sequences derived from symbionts from all testate amoeba species were almost identical (at most 3 silent nucleotides difference out of 780 bp) and were assigned to a new Trebouxiophyceae taxon we named TACS (Testate Amoeba Chlorella Symbionts). This “one alga fits all mixotrophic testate amoeba” pattern suggests that photosynthetic symbionts have pre-adaptations to endosymbiosis and colonise diverse hosts from a free-living stage.
  • Publication
    Accès libre
    Using DNA-barcoding for sorting out protest species complexes:: A case study of the Nebela tincta–collaris–bohemica group (Amoebozoa; Arcellinida, Hyalospheniidae)
    ;
    Gomaa, Fatma
    ;
    ;
    Heger, Thierry J.
    ;
    Species identification by means of morphology is often problematic in protists. Nebela tincta–collaris–bohemica (Arcellinida) is a species complex of small to medium-sized (ca.100 μm) testate amoebae common in peat bogs and forest soils. The taxonomic validity of characters used to define species within this group is debated and causes confusion in studies of biogeography, and applications in palaeoecology.
    We examined the relationship between morphological and genetic diversity within this species complex by combined analyses of light microscopy imaging and Cytochrome Oxidase Subunit 1(COI) sequences obtained from the same individual amoeba cells. Our goals were (1) to clarify the taxonomy and the phylogenetic relationships within this group, and (2) to evaluate if individual genotypes corresponded to specific morphotypes and the extent of phenotypic plasticity.
    We show here that small variations in test morphology that have been often overlooked by traditional taxonomy correspond to distinct haplotypes. We therefore revise the taxonomy of the group. We redefine Nebela tincta (Leidy) Kosakyan et Lara and N. collaris (Ehrenberg 1848) Kosakyan et Gomaa, change N. tincta var. rotunda Penard to N. rotunda (Penard 1890), describe three new species: N. guttata n. sp. Kosakyan et Lara, N. pechorensis n. sp. Kosakyan et Mitchell, and N. aliciae n. sp. Mitchell et Lara.