Voici les éléments 1 - 4 sur 4
  • Publication
    Accès libre
    SSU rRNA reveals a sequential increase in shell complexity among the euglyphid testate amoebae (Rhizaria : Euglyphida)
    (2007) ;
    Heger, Thierry J
    ;
    ;
    Meisterfeld, Ralf
    ;
    Ekelund, Flemming
    The existing data on the molecular phylogeny of filose testate amoebae from order Euglyphida has revealed contradictions between traditional morphological classification and SSU rRNA phylogeny and, moreover, the position of several important genera remained unknown. We therefore carried out a study aiming to fill several important gaps and better understand the relationships among the main euglyphid testate amoebae and the evolutionary steps that led to the present diversity at a higher level. We obtained new SSU rRNA sequences from five genera and seven species. This new phylogeny obtained shows that (1) the clade formed by species of genera Assulina and Placocista branches unambiguously at the base of the subclade of Euglyphida comprising all members of the family Trinematidae and genus Euglypha, (2) family Trinematidae (Trachelocorythion, Trinema, and Corythion) branches as a sister group to genus Euglypha, (3) three newly sequenced Euglypha species (E. cf. ciliata, E. penardi, and E. compressa) form a new clade within the genus. Since our results show that Assulina and Placocista do not belong to the Euglyphidae (unless the Trinematidae are also included in this family), we propose the creation of a new family named Assulinidae. Consequently, we give a family status to the genera Euglypha and (tentatively) Scutiglypha, which become the new family Euglyphidae. The evolutionary pattern suggested by SSU rRNA phylogeny shows a clear tendency towards increasing morphological complexity of the shell characterised by changes in the symmetry (migration of the aperture to a ventral position and/or compression of the shell) and the appearance of specialised scales at the aperture (in families Trinematidae and Euglyphidae). (C) 2007 Elsevier GmbH. All rights reserved.
  • Publication
    Accès libre
    SSU rRNA Reveals a Sequential Increase in Shell Complexity Among the Euglyphid Testate Amoebae (Rhizaria: Euglyphida)
    (2007) ;
    Heger, Thierry J.
    ;
    ;
    Meisterfeld, Ralf
    ;
    Ekelund, Flemming
    The existing data on the molecular phylogeny of filose testate amoebae from order Euglyphida has revealed contradictions between traditional morphological classification and SSU rRNA phylogeny and, moreover, the position of several important genera remained unknown. We therefore carried out a study aiming to fill several important gaps and better understand the relationships among the main euglyphid testate amoebae and the evolutionary steps that led to the present diversity at a higher level.
    We obtained new SSU rRNA sequences from five genera and seven species. This new phylogeny obtained shows that (1) the clade formed by species of genera Assulina and Placocista branches unambiguously at the base of the subclade of Euglyphida comprising all members of the family Trinematidae and genus Euglypha, (2) family Trinematidae (Trachelocorythion, Trinema, and Corythion) branches as a sister group to genus Euglypha, (3) three newly sequenced Euglypha species (E. cf. ciliata, E. penardi, and E. compressa) form a new clade within the genus.
    Since our results show that Assulina and Placocista do not belong to the Euglyphidae (unless the Trinematidae are also included in this family), we propose the creation of a new family named Assulinidae. Consequently, we give a family status to the genera Euglypha and (tentatively) Scutiglypha, which become the new family Euglyphidae.
    The evolutionary pattern suggested by SSU rRNA phylogeny shows a clear tendency towards increasing morphological complexity of the shell characterised by changes in the symmetry (migration of the aperture to a ventral position and/or compression of the shell) and the appearance of specialised scales at the aperture (in families Trinematidae and Euglyphidae).
  • Publication
    Métadonnées seulement
    The testate lobose amoebae (order Arcellinida Kent, 1880) finally find their home within Amoebozoa
    (2005)
    Nikolaev, Sergey I
    ;
    ;
    Petrov, Nikolay B
    ;
    Berney, Cédric
    ;
    Fahrni, José
    ;
    Pawlowski, Jan
    Testate lobose amoebae (order Arcellinida Kent, 1880) are common in all aquatic and terrestrial habitats, yet they are one of the last higher taxa of unicellular eukaryotes that has not found its place in the tree of life. The morphological approach did not allow to ascertain the evolutionary origin of the group or to prove its monophyly. To solve these challenging problems, we analyzed partial small-subunit ribosomal RNA (SSU rRNA) genes of seven testate lobose amoebae from two out of the three suborders and seven out of the 13 families belonging to the Arcellinida. Our data support the monophyly of the order and clearly establish its position among Amoebozoa, as a sister-group to the clade comprising families Amoebidae and Hartmannellidae. Complete SSU rRNA gene sequences from two species and a partial actin sequence from one species confirm this position. Our phylogenetic analyses including representatives of all sequenced lineages of lobose amoebae suggest that a rigid test appeared only once during the evolution of the Amoebozoa, and allow reinterpretation of some morphological characters used in the systematics of Arcellinida. (c) 2005 Published by Elsevier GmbH.
  • Publication
    Accès libre
    The Testate Lobose Amoebae (Order Arcellinida Kent, 1880) Finally Find their Home within Amoebozoa
    (2005)
    Nikolaev, Sergey I.
    ;
    ;
    Petrov, Nikolay B.
    ;
    Berney, Cédric
    ;
    Fahrni, José
    ;
    Pawlowski, Jan
    Testate lobose amoebae (order Arcellinida Kent, 1880) are common in all aquatic and terrestrial habitats, yet they are one of the last higher taxa of unicellular eukaryotes that has not found its place in the tree of life. The morphological approach did not allow to ascertain the evolutionary origin of the group or to prove its monophyly. To solve these challenging problems, we analyzed partial small-subunit ribosomal RNA (SSU rRNA) genes of seven testate lobose amoebae from two out of the three suborders and seven out of the 13 families belonging to the Arcellinida. Our data support the monophyly of the order and clearly establish its position among Amoebozoa, as a sister-group to the clade comprising families Amoebidae and Hartmannellidae. Complete SSU rRNA gene sequences from two species and a partial actin sequence from one species confirm this position. Our phylogenetic analyses including representatives of all sequenced lineages of lobose amoebae suggest that a rigid test appeared only once during the evolution of the Amoebozoa, and allow reinterpretation of some morphological characters used in the systematics of Arcellinida.