Voici les éléments 1 - 1 sur 1
Vignette d'image
Publication
Accès libre

NAD9/NAD7 (mitochondrial nicotinamide adenine dinucleotide dehydrogenase gene): A new “Holy Grail” phylogenetic and DNA-barcoding marker for Arcellinida (Amoebozoa)?

, Blandenier, Quentin, Lara, Enrique, Mitchell, Edward, Alcantara, Daniel M.C, Siemensma, Ferry J, Todorov, Milcho, Lahr, Daniel J.G

Molecular phylogeny is an indispensable tool for assessing evolutionary relationships among protists. The most commonly used marker is the small subunit ribosomal RNA gene, a conserved gene present in many copies in the nuclear genomes. However, this marker is not variable enough at a fine-level taxonomic scale, and intra-genomic polymorphism has already been reported. Finding a marker that could be useful at both deep and fine taxonomic resolution levels seemed like a utopic dream. We designed Amoebozoa-specific primers to amplify a region including partial sequences of two subunits of the mitochondrial nicotinamide adenine dinucleotide dehydrogenase gene (NAD9/NAD7). We applied them to arcellinids belonging to distantly related genera (Arcella, Difflugia, Netzelia and Hyalosphenia) and to Arcellinid-rich environmental samples to obtain additional Amoebozoa sequences. Tree topology was congruent with previous phylogenies, all nodes being highly supported, suggesting that this marker is well-suited for deep phylogenies in Arcellinida and perhaps Amoebozoa. Furthermore, it enabled discrimination of close-related taxa. This short genetic marker (ca. 250 bp) can therefore be used at different taxonomic levels, due to a fast-varying intergenic region presenting either a small intergenic sequence or an overlap, depending on the species.