Voici les éléments 1 - 5 sur 5
  • Publication
    Accès libre
    Autogenic succession, land-use change, and climatic influences on the Holocene development of a kettle-hole mire in Northern Poland
    (Elsevier, 2008)
    Lamentowicz, Mariucz
    ;
    Milena Obremska
    ;
    We reconstructed the Holocene developmental history of a kettle-hole peatland in the Tuchola Forest of Northern Poland, using pollen, testat amoebae and plant macrofossil indicators. Our aims were to determine the timing and pattern of autogenic succession and natural and anthropogenic influences on the peatland. Northern Poland is under mixed oceanic and continental climatic influences but has so far been less studied in a palaeoecological context than more oceanic regions of Europe. In the first terrestrial developmental phase of the mire, the testate amoebae-inferred depth to water table revealed two major dry shifts at ca. 9400 (end of lake phase) and ca. 7100 cal BP (a period of global cooling and dry shift in Western Europe). Conditions became wetter again in two steps at ca. 6700 and ca. 5800 BP after a dry event at ca. 6100 BP. The timing of the wet shift at 5800 BP corresponds to wet periods in Western Europe. Peat accumulation rates were low (0.1 mm yr− 1) between ca. 5600 and ca. 3000 BP when sedges dominated the peatland. In the last 2500 yrs surface moisture fluctuated with wet events at ca. 2750–2400, and 2000 BP, and dry events at ca. 2250–2100 and 1450 BP. After 1450 BP a trend towards wetter conditions culminated at ca. 500 cal BP, possibly caused by local deforestation. Over the mire history, pH (inferred from testate amoebae) was mostly low (around 5) with two short-lived shifts to alkaline conditions (7.5) at ca. 6100 and 1450 BP indicating a minerotrophic influence from surface run-off into the mire. Up to about 1000 BP the ecological shifts inferred from the three proxies agree with palaeoclimatic records from Poland and Western Europe. After this date, however correlation is less clear suggesting an increasing local anthropogenic impact on the mire. This study confirms that kettle-hole peatlands can yield useful palaeoenvironmental data as well as recording land-use change and calls for more comparable studies in regions are the interface between major climate influences.
  • Publication
    Accès libre
    Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland
    (2007)
    Lamentowicz, Mariucz
    ;
    Tobolski, Kazimierz
    ;
    The Holocene developmental history of a small kettle-hole peatland in northern Poland was studied using radiocarbon dating and analyses of pollen, plant macrofossils and testate amoebae with the aim of sorting out the influences of climate change, autogenic succession and human impact. The mire followed the classical succession from lake to a Sphagnum-dominated peatland, but peat accumulation only started about 3000 cal. BP. A rapid shift to wetter conditions, lower pH and higher peat accumulation rate took place about 110—150 years before present, when the vegetation shifted to a Sphagnum-dominated poor fen with some bog plants. While the first shift to a peat-accumulating system was most likely driven by climate, the second one was probably caused by forest clearance around the mire. This shift towards a Sphagnum-dominated vegetation mirrors both in pattern and timing the changes observed in similar situations in North America and New Zealand. While human activities have overall caused the loss of vast expanses of peatlands worldwide in recent centuries, locally they may have also allowed the development of communities that are now ironically considered to have a high conservation value. However, in the case of the site studied the likely anthropogenic shift to bog vegetation was at the expense of a species-rich poor fen, which today has even higher conservation value than ombrotrophic bogs. Thus this study also illustrates the value of palaeoecology for peatland management and biodiversity conservation.
  • Publication
    Accès libre
    Testate amoebae (Protists) as palaeoenvironmental indicators in peatlands
    (2005)
    Lamentowicz, Mariusz
    ;
    Testate amoebae (or testaceans, Testacea, Arcellaceans) are unicellular eukaryotic organisms living in freshwater or most terrestrial habitats such as soils, mosses, lakes, rivers, as well as brackish habitats such as estuaries. They are very abundant in Sphagnum mosses, where they live in the top part of mosses and the oxygenated part of the peat. The tests (shells) of Tesiacea are well preserved in peat and to a lesser extent in lake sediments. Efforts should be concentrated on constructing reliable regional transfer functions (mathematical representation of relation of species to environmental variables — presence of particular taxa in fossil material is the function of past environmental pa- rameters). as they exist for some world areas, and there is a complete lack of them for central Europe. Polish data are ex- ceptionally important because Poland is under several contrasted climatic influences — from oceanic to continental. The comparison of our data on climatic tendencies with those from Western Europe and the rest of the world will show how similar or different the responses of Polish peatlands might be. The paper has three aims: (a) to present the need for ecological studies on testate amoebae in Central Europe, (b) to show the potential of reconstruction of past environment on the basis ofmultiproxy studies that include testate amoebae as an in- tegral part of the palaeoecology toolbox and (c) to put our research efforts on testate amoebae in Poland in a more global perspective.
  • Publication
    Accès libre
    The palaeoecological history of the Praz-Rodet bog (Swiss Jura) based on pollen, plant macrofossils and testate amoebae (Protozoa)
    (2001) ;
    van der Knaap, W. O.
    ;
    van Leeuwen, Jacqueline F.N.
    ;
    Buttler, Alexandre
    ;
    Warner, Barry G.
    ;
    Stratigraphy, radiocarbon dating and analyses of pollen, plant macrofossils and testate amoebae were used to reconstruct the development and ecology of a small raised bog in a karst-dominated landscape in the Swiss Jura Mountains. Special focus was on past vegetation and on the history of Pinus rotundata in relation to anthropogenic and climatic influences. Testate amoebae were used to reconstruc-t past local soil pH and water-table depth. The inferred development of the Praz-Rodet bog typifies a classic hydroseral tefrestrialization of a small basin. Two features are specific for this site. First, the bog was much wetter than today for a long period; according to our hypothesis, this only changed as a consequence of human activities. Second, two hiatuses are present at the coring location (Younger Dryas--early Preboreal, and 4700-2800 cal. yr BP), the former probably caused by low lake productivity due to cold temperatures and the latter by the erosional activity of the adjacent small river. The date of 2800 cal. yr BP for renewed peat accumulation may be related to climatic change (Subboreal-Subatlantic transition). Pollen indicators failed to show one hiatus: an apparently complete pollen sequence is therefore no guarantee of an uninterrupted sediment accumulation. Evidence of early minor human impact on the vegetation in the Joux Valley dates back to c. 6850 calendar years, congruous with the early Neolithic in the Jura Mountains. The history of Pinuis rotindata appears to be more complex than previously believed. Human activity is clearly responsible for the present abundance of this species, but the tree was naturally present on the bog long before the first evidence of important human disturbance of the site (1500 cal. yr BP). It is suggested that, in karst-dominated landscapes, dense forests growing on mineral soils around raised bogs may significantly reduce summer evapotranspiration by acting as windbreaks. Forest clearance results in increased evapotranspiration, causing a lowering of the water table on the bog and a modification of the vegetation cover. This hypothesis has implications for the management of similar small raised bogs in karst-dominated landscape.
  • Publication
    Accès libre
    Can pollution bias peatland paleoclimate reconstruction?
    Payne, Richard J.
    ;
    ;
    Nguyen-Viet, Hung
    ;
    Gilbert, Daniel
    Peatland testate amoebae are widely used to reconstruct paleohydrological/climatic changes, but many species are also known to respond to pollutants. Peatlands around the world have been exposed to anthropogenic and intermittent natural pollution through the late Holocene. This raises the question: can pollution lead to changes in the testate amoeba paleoecological record that could be erroneously interpreted as a climatic change? To address this issue we applied testate amoeba transfer functions to the results of experiments adding pollutants (N, P, S, Pb, O3) to peatlands and similar ecosystems. We found a significant effect in only one case, an experiment in which N and P were added, suggesting that pollution-induced biases are limited. However, we caution researchers to be aware of this possibility when interpreting paleoecological records. Studies characterising the paleoecological response to pollution allow pollution impacts to be tracked and distinguished from climate change.