Voici les éléments 1 - 2 sur 2
Vignette d'image
Publication
Accès libre

Molecular phylogeny of euglyphid testate amoebae (Cercozoa: Euglyphida) suggests transitions between marine supralittoral and freshwater/terrestrial environments are infrequent

2010, Heger, Thierry J., Mitchell, Edward, Todorov, Milcho, Golemansky, Vassil, Lara, Enrique, Leander, Brian S., Pawlowski, Jan

Marine and freshwater ecosystems are fundamentally different regarding many biotic and abiotic factors. The physiological adaptations required for an organism to pass the salinity barrier are considerable. Many eukaryotic lineages are restricted to either freshwater or marine environments. Molecular phylogenetic analyses generally demonstrate that freshwater species and marine species segregate into different sub-clades, indicating that transitions between these two environments occur only rarely in the course of evolution. It is, however, unclear if the transitions between freshwater and environments characterized by highly variable salinities, such as the marine supralittoral zone, are also infrequent. Here, we use testate amoebae within the Euglyphida to assess the phylogenetic interrelationships between marine supralittoral and freshwater taxa. Euglyphid testate amoebae are mainly present in freshwater habitats but also occur in marine supralittoral environments. Accordingly, we generated and analyzed partial SSU rRNA gene sequences from 49 new marine/supralittoral and freshwater Cyphoderiidae sequences, 20 sequences of the Paulinellidae, Trinematidae, Assulinidae, and Euglyphidae families as well as 21 GenBank sequences of unidentified taxa derived from environmental PCR surveys. Both the molecular and morphological data suggest that the diversity of Cyphoderiidae is strongly underestimated. The results of our phylogenetic analyses demonstrated that marine supralittoral and freshwater euglyphid testate amoeba species are segregated into distinct sub-clades, suggesting that transitions between these two habitats occurred only infrequently.

Vignette d'image
Publication
Accès libre

Risks of large-scale use of systemic insecticides to ecosystem functioning and services

, Chagnon, Madeleine, Kreutzweiser, David. P, Mitchell, Edward, Morrissey, Christy A, Noome Dominique A, Van der Sluijs, Jeroen P

Large-scale use of the persistent and potent neonicotinoid and fipronil insecticides has raised concerns about risks to ecosystem functions provided by a wide range of species and environments affected by these insecticides. The concept of ecosystem services is widely used in decision making in the context of valuing the service potentials, benefits, and use values that well-functioning ecosystems provide to humans and the biosphere and, as an endpoint (value to be protected), in ecological risk assessment of chemicals. Neonicotinoid insecticides are frequently detected in soil and water and are also found in air, as dust particles during sowing of crops and aerosols during spraying. These environmental media provide essential resources to support biodiversity, but are known to be threatened by long-term or repeated contamination by neonicotinoids and fipronil. We review the state of knowledge regarding the potential impacts of these insecticides on ecosystem functioning and services provided by terrestrial and aquatic ecosystems including soil and freshwater functions, fisheries, biological pest control, and pollination services. Empirical studies examining the specific impacts of neonicotinoids and fipronil to ecosystem services have focused largely on the negative impacts to beneficial insect species (honeybees) and the impact on pollination service of food crops. However, here we document broader evidence of the effects on ecosystem functions regulating soil and water quality, pest control, pollination, ecosystem resilience, and community diversity. In particular, microbes, invertebrates, and fish play critical roles as decomposers, pollinators, consumers, and predators, which collectively maintain healthy communities and ecosystem integrity. Several examples in this review demonstrate evidence of the negative impacts of systemic insecticides on decomposition, nutrient cycling, soil respiration, and invertebrate populations valued by humans. Invertebrates, particularly earthworms that are important for soil processes, wild and domestic insect pollinators which are important for plant and crop production, and several freshwater taxa which are involved in aquatic nutrient cycling, were all found to be highly susceptible to lethal and sublethal effects of neonicotinoids and/or fipronil at environmentally relevant concentrations. By contrast, most microbes and fish do not appear to be as sensitive under normal exposure scenarios, though the effects on fish may be important in certain realms such as combined fish-rice farming systems and through food chain effects. We highlight the economic and cultural concerns around agriculture and aquaculture production and the role these insecticides may have in threatening food security. Overall, we recommend improved sustainable agricultural practices that restrict systemic insecticide use to maintain and support several ecosystem services that humans fundamentally depend on.