Voici les éléments 1 - 3 sur 3
Vignette d'image
Publication
Accès libre

A molecular approach to microeukaryotic diversity, ecology and biogeography associated with Sphagnum mosses

2017, Singer, David,, Lara, Enrique, Mitchell, Edward

Malgré le fait que les micro-eucaryotes composent la majeure partie de la biodiversité terrestre et jouent de nombreux rôles essentiels dans le maintien des écosystèmes, la connaissance de leur diversité, de leur écologie ainsi que de leurs aires de répartition reste très lacunaire. Dans ce sens, les objectifs de cette thèse sont 1) d’accroître la connaissance de la diversité des micro-eucaryotes 2) de caractériser les préférences écologiques et de déterminer quelles sont les principales variables qui influencent la composition des communautés et enfin 3) de comprendre les règles qui dirigent les communautés à l’échelle locale et globale. Pour atteindre ces objectifs, un milieu spécifique a été sélectionné : la "sphagnosphère", celui-ci désigne l’eau interstitielle sous l’influence des mousses de sphaignes (Sphagnum). Cet environnement est un excellent modèle en biologie car il se caractérise par une faible teneur en éléments nutritifs, un faible pH, des quantités élevées d’acides organiques et une grande stabilité dans le temps.
Nous avons d’abord exploré la diversité de deux groupes de protistes vivant dans les sphaignes. Le premier groupe est le genre Nebela (Arcellinida, Hyalospheniidae), un groupe d’amibes à thèque composé d’espèces étroitement apparentées. Nous avons décrit formellement la plus abondante et l’avons nommée Nebela gimllii en raison de la taille de sa thèque. Les différents profils de communautés ont révélé que les espèces ne sont pas distribuées de manière aléatoire dans les tourbières. Au contraire, nous avons observé un fort groupement phylogénétique dans les zones oligotrophes, ce qui suggère que les teneurs faibles en azote exercent une forte pression environnementale. Nous avons également étudié la diversité moléculaire du clade d’Oomycota. Ce sont des stramenopiles qui se composent de nombreux parasites d’animaux, de champignons et de végétaux, ainsi que d’espèces saprotrophes. Nous avons révélé une grande diversité dans ce clade ce qui était inattendu pour des organismes osmotrophes vivant dans des habitats oligotrophes. De plus, la plupart des phylotypes trouvés ne sont pour le moment pas décrits morphologiquement ni génétiquement, ce qui suggère l’existence d’organismes hautement spécialisés.
Nous avons également étudié la diversité des micro-eucaryotes vivant dans des Sphaignes situées à différentes altitudes dans trois zones climatiques différentes : tempérée (Suisse-France-Italie), subtropicale (Japon) et tropicale (Costa Rica). Nos résultats suggèrent que 25% des phylotypes étaient communs dans ces trois zones. Nous avons également trouvé une corrélation significativement négative entre la quantité de phylotypes liés aux organismes mixotrophes et des températures élevées. Cela suggère que la mixotrophie est désavantageuse dans un climat chaud. Enfin, nous avons étudié la répartition spatiale d’une espèce emblématique d’amibe à thèque trouvé dans les tourbières de l’hémisphère nord: Hyalosphenia papilio. Un total de 13 lignées ont été trouvées, dont neuf présentent des distributions restreintes et quatre sont bien réparties dans tout le domaine holarctique. Nous avons montré, sur la base de reconstructions phylogénétiques et d’une reconstitution des caractères ancestraux, que l’origine de H. papilio se situe probablement sur la côte ouest de l’Amérique du Nord.
En résumé, ma thèse démontre que l’environnement « sphagnosphère » accueille une diversité élevée et unique de micro-eucaryotes. Cette diversité est influencée par des variables environnementales physicochimiques à l’échelle locale mais également par le climat et la distance géographique à l’échelle mondiale. Nous avons identifié et quantifié les principales variables abiotiques locales (à savoir la microtopographie et la teneur en azote) qui influencent fortement les communautés au sein d’une même zone climatique. Ces variables ont exercé un fort effet de filtre environnemental, qui semble être un processus fondamental dans la mise en place des communautés. De plus, à l’échelle mondiale, nous avons démontré que la température était le principal paramètre influençant la composition de la communauté, et notamment l’abondance mixotrophique. Aux deux échelles, la composition des communautés, et donc les interactions biotiques (et probablement le fonctionnement des écosystèmes), changent radicalement., Despite the fact that free-living microeukaryotes compose the major part of Earth’s biodiversity and play numerous essential roles in ecosystems, knowledge on their true diversity, ecology and their global patterns of distribution remain limited. In this sense, the objectives of this thesis are 1) to increase the knowledge on the diversity of microeukaryotes 2) characterize the ecological preferences and determine which are the main variables that influence community composition, and finally 3) to understand the rules that shape the communities at both local and global scales. To meet these objectives a specific component of the earth surface was selected: the “Sphagnosphere” i.e. the interstitial water directly influenced by Sphagnum mosses. This understudied but unique microenvironment is characterized by low nutrient contents, low pH, and high amounts of organic acids produced by the mosses. It is also very stable over time.
We first explored the diversity of two groups of protists in Sphagnum peatlands. The first group was genus Nebela (Arcellinida, Hyalospheniidae), a common testate amoeba taxon in acidic soils. We formally described the most abundant one and named it Nebela gimllii due to the small and stout shells. The different community profiles revealed that species are not randomly distributed among microhabitats in peatlands. Instead, we observed a strong phylogenetic clustering in nitrogen-poor areas suggesting that little amounts of nitrogen exerted strong environmental filtering. We also surveyed the molecular diversity of Oomycota, a clade of fungi- like stramenopiles which enclose many animal, fungi and plant parasites, as well as saprotrophic species. We revealed a high diversity, which was unexpected for osmotrophic organisms in nutrient-poor habitats unless most are parasitic. Moreover, most phylotypes found were not recorded in previous studies, which suggest the existence of highly specialized organisms.
We also surveyed the diversity of microbial eukaryotes along altitudinal gradients in three different climatic zones, temperate (western Alps), subtropical (Japan) and tropical (Costa Rica). We showed that 25 percent of phylotypes were shared in the three climatic zones. We found also a significant negative correlation between the proportion of phylotypes related to mixotrophic organisms and temperature. This, in line with other lines of evidence in the literature corroborates the idea that mixotrophy is disadvantageous under warm climates. Finally, we studied the spatial distribution of an emblematic morphospecies of testate amoeba found in the northern hemisphere peatlands: Hyalosphenia papilio. A total of 13 lineages were found, from which nine showed narrowly restricted distributions, and four were well distributed across the Holarctic realm. We showed, based on phylogenetic analyses and ancestral character reconstructions that H. papilio most probably appeared somewhere in the West Coast of North America.
In summary, my PhD revealed that the Sphagnosphere environment hosts high and unique diversity. This diversity is driven by physicochemical factors at the local scale and by climate and geographical distance at the global scale. We identified and quantified the main local abiotic variables, amongst which micro-topography and nitrogen content appeared to be the most significant in shaping micro-eukaryotic diversity within the same climate zone. These variables exerted strong environmental filtering, which appeared to be fundamental process of community assembly. On the other hand, at a global scale, we demonstrated that temperature was the factor that best explain community composition, and notably the abundance of mixotrophs (and hence a different functioning). At both scales, community composition, and therefore biotic interactions (and most probably ecosystem functioning) change drastically.

Vignette d'image
Publication
Accès libre

Dispersal limitations and historical factors determine the biogeography of specialized terrestrial protists

, Singer, David, Mitchell, Edward, Payne, Richard J, Blandenier, Quentin, Duckert, Clément, Fernández, Leonardo D, Fournier, Bertrand, Hernández, Cristián E, Granath, Gustaf, Rydin, Håkan, Bragazza, Luca, Koronatova, Natalia G, Goia, Irina, Harris, Lorna I, Kajukało, Katarzyna, Kosakyan, Anush, Lamentowicz, Mariusz, Kosykh, Natalia P, Vellak, Kai, Lara, Enrique

Recent studies show that soil eukaryotic diversity is immense and dominated by micro‐organisms. However, it is unclear to what extent the processes that shape the distribution of diversity in plants and animals also apply to micro‐organisms. Major diversification events in multicellular organisms have often been attributed to long‐term climatic and geological processes, but the impact of such processes on protist diversity has received much less attention as their distribution has often been believed to be largely cosmopolitan. Here, we quantified phylogeographical patterns in Hyalosphenia papilio, a large testate amoeba restricted to Holarctic Sphagnum‐dominated peatlands, to test if the current distribution of its genetic diversity can be explained by historical factors or by the current distribution of suitable habitats. Phylogenetic diversity was higher in Western North America, corresponding to the inferred geographical origin of the H. papilio complex, and was lower in Eurasia despite extensive suitable habitats. These results suggest that patterns of phylogenetic diversity and distribution can be explained by the history of Holarctic Sphagnum peatland range expansions and contractions in response to Quaternary glaciations that promoted cladogenetic range evolution, rather than the contemporary distribution of suitable habitats. Species distributions were positively correlated with climatic niche breadth, suggesting that climatic tolerance is key to dispersal ability in H. papilio. This implies that, at least for large and specialized terrestrial micro‐organisms, propagule dispersal is slow enough that historical processes may contribute to their diversification and phylogeographical patterns and may partly explain their very high overall diversity.

Vignette d'image
Publication
Accès libre

One Alga to Rule them All: Unrelated Mixotrophic Testate Amoebae (Amoebozoa, Rhizaria and Stramenopiles) Share the Same Symbiont (Trebouxiophyceae)

, Gomaa, Fatma, Kosakyan, Anush, Heger, Thierry J, Corsaro, Daniele, Mitchell, Edward, Lara, Enrique

Endosymbiosis is a central and much studied process in the evolution of eukaryotes. While plastid evolution in eukaryotic algae has been extensively studied, much less is known about the evolution of mixotrophy in amoeboid protists, which has been found in three of the five super groups of Eukaryotes. We identified the green endosymbionts in four obligate mixotrophic testate amoeba species belonging to three major eukaryotic clades, Hyalosphenia papilio and Heleopera sphagni (Amoebozoa: Arcellinida), Placocista spinosa (Rhizaria: Euglyphida), and Archerella flavum (Stramenopiles: Labyrinthulomycetes) based on rbcL (ribulose-1,5-diphosphate carboxylase/oxygenase large subunit) gene sequences. We further investigated whether there were different phylotypes of algal endosymbionts within single H. papilio cells and the degree of host-symbiont specificity by amplifying two genes: COI (mitochondrial cytochrome oxydase subunit 1) from the testate amoeba host, and rbcL from the endosymbiont. Results show that all studied endosymbionts belong to genus Chlorella sensu stricto, closely related to Paramecium bursaria Chlorella symbionts, some lichen symbionts and also several free-living algae. Most rbcL gene sequences derived from symbionts from all testate amoeba species were almost identical (at most 3 silent nucleotides difference out of 780 bp) and were assigned to a new Trebouxiophyceae taxon we named TACS (Testate Amoeba Chlorella Symbionts). This “one alga fits all mixotrophic testate amoeba” pattern suggests that photosynthetic symbionts have pre-adaptations to endosymbiosis and colonise diverse hosts from a free-living stage.