Voici les éléments 1 - 10 sur 142
  • Publication
    Accès libre
    Assessing the responses of Sphagnum micro-eukaryotes to climate changes using high throughput sequencing
    (2020-9-18) ;
    Seppey, Christophe Victor William
    ;
    ;
    Jassey, Vincent E.J.
    ;
    Buttler, Alexandre
    ;
    Slowinska, Sandra
    ;
    Slowinski, Michal
    ;
    ;
    Lamentowicz, Mariusz
    ;
    Current projections suggest that climate warming will be accompanied by more frequent and severe drought events. Peatlands store ca. one third of the world’s soil organic carbon. Warming and drought may cause peatlands to become carbon sources through stimulation of microbial activity increasing ecosystem respiration, with positive feedback effect on global warming. Micro-eukaryotes play a key role in the carbon cycle through food web interactions and therefore, alterations in their community structure and diversity may affect ecosystem functioning and could reflect these changes. We assessed the diversity and community composition of Sphagnum-associated eukaryotic microorganisms inhabiting peatlands and their response to experimental drought and warming using high throughput sequencing of environmental DNA. Under drier conditions, micro-eukaryotic diversity decreased, the relative abundance of autotrophs increased and that of osmotrophs (including Fungi and Peronosporomycetes) decreased. Furthermore, we identified climate change indicators that could be used as early indicators of change in peatland microbial communities and ecosystem functioning. The changes we observed indicate a shift towards a more “terrestrial” community in response to drought, in line with observed changes in the functioning of the ecosystem.
  • Publication
    Accès libre
    Ultra-trace level determination of neonicotinoids in honey as a tool for assessing environmental contamination
    (2019-2-5)
    Kammoun, Souad
    ;
    Mulhauser, Blaise
    ;
    ; ;
    Glauser, Gaetan
    Neonicotinoids and the closely related insecticide classes sulfoximines and butenolides have recently attracted growing concerns regarding their potential negative effects on non-target organisms, including pollinators such as bees. Indeed, it is becoming increasingly clear that these effects may occur at much lower levels than those considered to be safe for humans. To properly assess the ecological and environmental risks posed by neonicotinoids, appropriate sampling and analytical procedures are needed. Here, we used honey as reliable environmental sampler and developed an unprecedentedly sensitive method based on QuEChERS and UHPLC-MS/MS for the simultaneous determination of the nine neonicotinoids and related molecules currently present on the market (acetamiprid, clothianidin, dinotefuran, flupyradifurone, imidacloprid, nitenpyram, sulfoxaflor, thiacloprid and thiamethoxam). The method was validated and provided excellent levels of precision and accuracy over a wide concentration range of 3–4 orders of magnitude. Lowest limits of quantification (LLOQs) as low as 2–20 pg/g of honey depending on the analytes were reached. The method was then applied to the analysis of 36 honey samples from various regions of the World which had already been analysed for the five most common neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid and thiamethoxam) in a previous study. This allowed us to determine the long-term stability (i.e. up to 40 months) of these molecules in honey, both at room temperature and −20 °C. We found that the five pesticides were stable over a period of several years at −20 °C, but that acetamiprid and thiacloprid partially degraded at room temperature. Finally, we also measured the levels of dinotefuran, nitenpyram, sulfoxaflor and flupyradifurone and found that 28% of the samples were contaminated by at least one of these pesticides.
  • Publication
    Accès libre
    Comment promouvoir une agriculture qui protège et profite de la biodiversité?
    (2018-11-1) ;
    Moinet, Gabriel
    ;
    Le déclin de la biodiversité et l’alté- ration des services écosystémiques mettent en péril la production à long terme de denrées alimentaires et de fourrage. Il est nécessaire de se tourner vers des systèmes de production agricole basés sur l’utili- sation de la diversité biologique et sur des écosystèmes en bon état de fonctionnement. L’agroécologie pro- pose de nouvelles solutions en la matière
  • Publication
    Accès libre
    Soil chemistry changes beneath decomposing cadavers over a one-year period
    Decomposing vertebrate cadavers release large, localized inputs of nutrients. These temporally limited resource patches affect nutrient cycling and soil organisms. The impact of decomposing cadavers on soil chemistry is relevant to soil biology, as a natural disturbance, and forensic science, to estimate the postmortem interval. However, cadaver impacts on soils are rarely studied, making it difficult to identify common patterns. We investigated the effects of decomposing pig cadavers (Sus scrofa domesticus) on soil chemistry (pH, ammonium, nitrate, nitrogen, phosphorous, potassium and carbon) over a one-year period in a sprucedominant forest. Four treatments were applied, each with five replicates: two treatments including pig cadavers (placed on the ground and hung one metre above ground) and two controls (bare soil and bags filled with soil placed on the ground i.e. “fake pig” treatment). In the first two months (15–59 days after the start of the experiment), cadavers caused significant increases of ammonium, nitrogen, phosphorous and potassium (p < 0.05) whereas nitrate significantly increased towards the end of the study (263–367 days; p < 0.05). Soil pH increased significantly at first and then decreased significantly at the end of the experiment. After one year, some markers returned to basal levels (i.e. not significantly different from control plots), whereas others were still significantly different. Based on these response patterns and in comparison with previous studies, we define three categories of chemical markers that may have the potential to date the time since death: early peak markers (EPM), late peak markers (LPM) and late decrease markers (LDM). The marker categories will enhance our understanding of soil processes and can be highly useful when changes in soil chemistry are related to changes in the composition of soil organism communities. For actual casework further studies and more data are necessary to refine the marker categories along a more precise timeline and to develop a method that can be used in court.
  • Publication
    Accès libre
    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: Impacts on organisms and ecosystems
    (2017-11-9)
    Pisa, Lennard
    ;
    Goulson, Dave
    ;
    Yang, En-Cheng
    ;
    Gibbons, David
    ;
    Sánchez-Bayo, Francisco
    ;
    ; ;
    van der Sluijs, Jeroen
    ;
    MacQuarrie, Chris JK
    ;
    Giorio, Chiara
    ;
    Yim Long, Elizabeth
    ;
    McField, Melanie
    ;
    Bijleveld van Lexmond, Maarten
    ;
    Bonmatin, Jean-Marc
    New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous Worldwide Integrated Assessment (WIA) in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little new information has been gathered on soil organisms. The impact on marine and coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal class (neonicotinoids and fipronil), with the potential to greatly decrease populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds, and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates and their deleterious impacts on growth, reproduction, and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota, and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015).
  • Publication
    Accès libre
    A worldwide survey of neonicotinoids in honey
    (2017-9-6) ;
    Mulhauser, Blaise
    ;
    ;
    Mutabazi, Aline
    ;
    Glauser, Gaétan
    ;
  • Publication
    Accès libre
    Patterns of earthworm, enchytraeid and nematode diversity and community structure in urban soils of different ages
    (2016-1-9) ;
    Dozsa-Farkas, Klara
    ;
    Boros, Gergely
    ;
    Rochat, Guy
    ;
    Sandoz, Gauthier
    ;
    ; ;
    Annelids (Lumbricidae and Enchytraeidae) and nematodes are common soil organisms and play important roles in organic matter decomposition, nutrient cycling and creation of soil structure and porosity. However, these three groups have rarely been studied together and only few studies exist for urban soils. We studied the diversity and community composition of annelids and nematodes in soils spanning more than two centuries of urban soil development in Neuch^atel (Switzerland) and assessed the relationships 1) among these three groups and 2) between each group and environmental (physical, chemical and functional) characteristics of soils and soil age. While the groups of environmental variables were correlated (Mantel tests) no correlation was found between pairs of soil fauna groups and between each soil fauna group and environmental variables. More specifically, redundancy analyses showed that earthworm assemblages were best correlated with soil bulk density and with soil depth, the latter being positively correlated with soil age. Enchytraeid assemblages and the proportion of enchytraeid r-strategists were respectively best correlated with soil carbonate content and negatively correlated with soil age. Nematodes assemblages were best correlated with soil water content. Moreover, relationships between pairs of soil biota groups, and between each group and environmental (physical, chemical and functional) variables, varied along the soil age gradient (moving window analysis). This study provides new knowledge on urban soil biodiversity and how environmental conditions can influence soil diversity and community patterns in the urban context. The contrasted community patterns of earthworms, enchytraeids and nematodes in urban soils of different ages and their different ecological roles suggest that they represent potential complementary indicators of soil quality and functioning such as soil formation and organic matter dynamics.
  • Publication
    Accès libre
    Comparative ecology of vascular plant, bryophyte and testate amoeba communities in four Sphagnum peatlands along an altitudinal gradient in Switzerland
    (2015-3-4) ;
    Feldmeyer-Christe, Elizabeth
    ;
    Monitoring tools are needed to assess changes in peatland biotic communities and ecosystem functions inresponse to on-going climate and other environmental changes. Although the responses of soil organismsand plants to ecological gradients and perturbations do not always correlate, peatland monitoring ismainly based on vegetation surveys. Testate amoebae, a group of protists, are important contributorsto carbon and nitrogen cycling in organic soils and are useful bioindicators in peatland ecology andpaleoecology. There is however little comparative data on the value of testate amoebae, vascular plantsand bryophytes as bioindicators of micro-environmental gradients in peatlands.We compared the relationships of testate amoebae, bryophytes, and vascular plants with soil tempera-ture, water table depth, micro-habitats and the carbon and nitrogen content of Sphagnum mosses in fourpeatlands along a 1300 m altitudinal gradient in Switzerland. We used the full diversity of vascular plantsand bryophyte but only a selection of ten easily identifiable testate amoeba morpho-taxa (i.e. species orspecies-complexes).Indirect and direct gradient ordinations, multiple factor analysis (MFA) and transfer function modelsfor inferring water table depth showed that a selection of ten testate amoeba taxa are more powerful (%variance explained in RDA) and accurate (discrimination among habitats) indicators of local conditions(micro-habitat type, water table depth and Sphagnum C/N ratio) than the vegetation (vascular plants andbryophytes either individually or combined and considering the full diversity).Our study showed that a limited list of ten easily identifiable testate amoeba taxa have higher bioindi-cation value than the full bryophytes and vascular plants. Furthermore, testate amoebae can be analyzedon samples collected at any season (accessibility allowing and if precise sampling sites are well marked)– a clear advantage for biomonitoring and can be used to infer past changes from the peat record at thesame taxonomic resolution. This simple approach could therefore be very useful for biomonitoring ofpeatlands.
  • Publication
    Accès libre
    Functional responses of multi-taxa communities to disturbance and stress gradients in a restored floodplain
    1. Trait-based approaches can reveal the mechanisms through which disturbances or stress impact communities, allowing comparisons of the role of different mechanisms in shaping communities among taxonomic groups. Such information can lead to higher comparability, transferability and predictability of the outcome of restoration projects. However, multitaxa trait-based approaches were rarely used in the context of ecosystem restoration. 2. We investigated the responses to environmental gradients of seven taxa (vascular plants, staphylinid and carabid beetles, spiders, isopods, diplopods and earthworms) in a restored floodplain using a species traits approach. We assessed the impact of flood disturbances and soil hydric stress on the functional diversity (FD) and community-weighted mean (CWM) response of traits for each taxon. 3. Ordination of hydrological variables revealed two main gradients. The first was related to the spatiotemporal dynamics of flood disturbances and the second to the average changes in soil hydric conditions. 4. The analysis of CWM revealed that larger, poorly mobile species with narrow ecological tolerances were filtered by regular floods and/or changes in soil hydric conditions. 5. Functional diversity patterns differed between the two gradients: decreasing with increasing flood disturbance, but increasing along the soil hydric stress gradient. This suggests that the mechanisms shaping community composition differ between the two gradients with environmental filtering being dominant with increasing flood disturbances and competition decreasing with more soil hydric stress. 6. Synthesis and applications. Our study shows that the impact of restored flood disturbances and soil hydric stress on plant and invertebrate functional diversity and community- weighted mean can be positive, negative or more complex depending on the taxonomic group and environmental gradient considered. The patterns can to some extent be explained by the specific characteristics of each group. Larger, poorly mobile species with narrow ecological tolerances were particularly vulnerable to changes in disturbance and stress regime following floodplain restoration. These species may therefore be lost in the initial phases of restoration projects, but other more characteristic species of dynamic floodplains will be favoured. Understanding the consequences of these contrasted responses for biodiversity conservation and ecosystem functioning constitutes the next challenge for ecosystem restoration.