Voici les éléments 1 - 7 sur 7
  • Publication
    Accès libre
    Glasshouse vs field experiments: do they yield ecologically similar results for assessing N impacts on peat mosses?
    (2012)
    Limpens, J.
    ;
    Granath, G.
    ;
    Aerts, R.
    ;
    Heijmans, M. M. P. D.
    ;
    Sheppard, L. J.
    ;
    Bragazza, L.
    ;
    Williams, B. L.
    ;
    Rydin, H.
    ;
    Bubier, J.
    ;
    Moore, T.
    ;
    Rochefort, L.
    ;
    ;
    Buttler, A.
    ;
    van den Berg, L. J. L.
    ;
    Gunnarsson, U.
    ;
    Francez, A. -J.
    ;
    Gerdol, R.
    ;
    Thormann, M.
    ;
    Grosvernier, P.
    ;
    Wiedermann, M. M.
    ;
    Nilsson, M. B.
    ;
    Hoosbeek, M. R.
    ;
    Bayley, S.
    ;
    Nordbakken, J. -F.
    ;
    Paulissen, M. P. C. P.
    ;
    Hotes, S.
    ;
    Breeuwer, A.
    ;
    Ilomets, M.
    ;
    Tomassen, H. B. M.
    ;
    Leith, I.
    ;
    Xu, B.

    • Peat bogs have accumulated more atmospheric carbon (C) than any other terrestrial ecosystem today. Most of this C is associated with peat moss (Sphagnum) litter. Atmospheric nitrogen (N) deposition can decrease Sphagnum production, compromising the C sequestration capacity of peat bogs. The mechanisms underlying the reduced production are uncertain, necessitating multifactorial experiments.
    • We investigated whether glasshouse experiments are reliable proxies for field experiments for assessing interactions between N deposition and environment as controls on Sphagnum N concentration and production. We performed a meta-analysis over 115 glasshouse experiments and 107 field experiments.
    • We found that glasshouse and field experiments gave similar qualitative and quantitative estimates of changes in Sphagnum N concentration in response to N application. However, glasshouse-based estimates of changes in production – even qualitative assessments – diverged from field experiments owing to a stronger N effect on production response in absence of vascular plants in the glasshouse, and a weaker N effect on production response in presence of vascular plants compared to field experiments.
    • Thus, although we need glasshouse experiments to study how interacting environmental factors affect the response of Sphagnum to increased N deposition, we need field experiments to properly quantify these effects.
  • Publication
    Accès libre
    COI gene and ecological data suggest size-dependent high dispersal and low intra-specific diversity in free-living terrestrial protists (Euglyphida: Assulina)
    (2010) ;
    Heger, Thierry J.
    ;
    Scheihing, Rodrigo
    ;
    Aim  Propagule size and ecological requirements are believed to be major factors influencing the passive dispersal of free-living terrestrial protists. We compared the colonization potential of three closely related testate amoeba species (Assulina muscorum, A. seminulum, A. scandinavica, ranging from 40 to 100 μm in length).
    Location  Europe.
    Methods  We collected individual Assulina species cells from Sphagnum peatlands across Europe. We sequenced a 550-bp fragment of the mitochondrial cytochrome c oxidase subunit I gene (COI) to estimate the within-species variability, as a proxy for gene flow. We reviewed existing ecological and palaeoecological data to assess the ecological tolerance of Assulina species and how rapidly they colonized developing peatlands.
    Results  We obtained COI sequences for 30 individuals of A. seminulum from eleven sites, for 39 of A. muscorum from six sites, and for six of A. scandinavica from two sites. We observed three haplotypes for A. seminulum and two for A. muscorum, often co-existing in the same sites. The sequences of A. scandinavica from the two sites were identical. Assulina muscorum and A. seminulum haplotypes varied by only 1–2 nucleotides, resulting in >99.5% similarity. Genetic diversity within A. seminulum was higher than that within A. muscorum. Ecological and palaeoecological records showed that A. muscorum was much more frequent and abundant than A. seminulum, and had a somewhat broader ecological tolerance for pH, moisture and water-table depth. Assulina muscorum always appeared early during the developmental history of peatlands, either before or simultaneously with A. seminulum.
    Main conclusions  The lack of genetic structure observed with a variable marker such as COI suggests high gene flow between the sites and thus rapid transport (at an evolutionary scale) over large distances, in agreement with the palaeoecological records. Thus, geographical distance alone does not seem to prevent the dispersal of testate amoebae, at least within Europe. Nevertheless, genetic diversity was significantly lower within A. muscorum than within A. seminulum, suggesting that its smaller size and abundance and/or broader ecological tolerance influence its effective dispersal capacity. These results are in agreement with the often earlier colonization of peatlands by A. muscorum and its broader ecological tolerance.
  • Publication
    Accès libre
    Potential implications of differential preservation of testate amoeba shells for paleoenvironmental reconstruction in peatlands
    (2008) ;
    Payne, Richard J.
    ;
    Lamentowicz, Mariucz
    Testate amoebae are now commonly used in paleoenvironmental studies but little is known of their taphonomy. There is some experimental evidence for differential preservation of some testate amoeba shell types over others, but it is unclear what, if any impact this has on palaeoenvironmental reconstruction. To investigate this issue we looked at palaeoecological evidence for the preservation of different shell types. We then investigated the possible impact of selective preservation on quantitative palaeoenvironmental inference. We first used existing palaeoecological data sets to assess the vertical patterns of relative abundance in four testate amoeba shell types: (1) shells made of secreted biosilica plates (idiosomes, e.g. Euglypha), (2) idiosomes with thick organic coating (Assulina), (3) proteinaceous shells (e.g. Hyalosphenia), (4) shells built from recycled organic or mineral particles (xenosomes) (e.g. Difflugia, Centropyxis). In three diagrams a clear pattern of decay was only observed for the idiosome type. In order to assess the implications of differential preservation of testate amoeba taxa for paleoenvironmental reconstruction we then carried out simulations using three existing transfer functions and a wide range of scenarios, downweighting different test categories to represent the impact of selective test decomposition. Simulation results showed that downweighting generally reduced overall model performance. However downweighting a shell type only produced a consistent directional bias in inferred water table depth where that shell type is both dominant and shows a clear preference along the ecological gradient. Applying a scenario derived from previous experimental work did not lead to significant difference in inferred water table. Our results show that differential shell preservation has little impact on paleohydrological reconstruction from Sphagnum-dominated peatlands. By contrast, for the minerotrophic peatlands data-set loss of idiosome tests leads to consistent underestimation of water table depth. However there are few studies from fens and it is possible that idiosome tests are not always dominant, and/or that differential decomposition is less marked than in Sphagnum peatlands. Further work is clearly needed to assess the potential of testate amoebae for paleoecological studies of minerotrophic peatlands.
  • Publication
    Accès libre
    Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future
    (2008) ;
    Charman, Daniel J.
    ;
    Warner, Barry G.
    Testate amoebae are an abundant and diverse polyphyletic group of shelled protozoa living in aquatic to moist habitats ranging from estuaries to lakes, rivers, wetlands, soils, litter, and moss habitats. Owing to the preservation of shells in sediments, testate amoebae are useful proxy indicators complementary to long-established indicators such as pollen and spores or macrofossils. Their primary use to date has been for inferring past moisture conditions and climate in ombrotrophic peatlands and, to a lesser extent, to infer pH in peatlands and the trophic or nutrient status of lakes. Recent research on these organisms suggests other possible uses in paleoecology and ecology such as sea-level reconstruction in estuarine environments, as indicators of soil or air pollution, and monitoring recovery of peatland. We review the past and present use of testate amoebae, the challenges in current research, and provide some ideas on future research directions.
  • Publication
    Accès libre
    Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland
    (2007)
    Lamentowicz, Mariucz
    ;
    Tobolski, Kazimierz
    ;
    The Holocene developmental history of a small kettle-hole peatland in northern Poland was studied using radiocarbon dating and analyses of pollen, plant macrofossils and testate amoebae with the aim of sorting out the influences of climate change, autogenic succession and human impact. The mire followed the classical succession from lake to a Sphagnum-dominated peatland, but peat accumulation only started about 3000 cal. BP. A rapid shift to wetter conditions, lower pH and higher peat accumulation rate took place about 110—150 years before present, when the vegetation shifted to a Sphagnum-dominated poor fen with some bog plants. While the first shift to a peat-accumulating system was most likely driven by climate, the second one was probably caused by forest clearance around the mire. This shift towards a Sphagnum-dominated vegetation mirrors both in pattern and timing the changes observed in similar situations in North America and New Zealand. While human activities have overall caused the loss of vast expanses of peatlands worldwide in recent centuries, locally they may have also allowed the development of communities that are now ironically considered to have a high conservation value. However, in the case of the site studied the likely anthropogenic shift to bog vegetation was at the expense of a species-rich poor fen, which today has even higher conservation value than ombrotrophic bogs. Thus this study also illustrates the value of palaeoecology for peatland management and biodiversity conservation.
  • Publication
    Accès libre
    Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs
    (2001)
    Berendse, Frank
    ;
    van Breemen, Nico
    ;
    Rydin, HÅkan
    ;
    Buttler, Alexandre
    ;
    Heijmans, Monique
    ;
    Hoosbeek, Marcel R.
    ;
    Lee, John A.
    ;
    ;
    Saarinen, Timo
    ;
    Vasander, Harri
    ;
    Wallén, Bo
    Part of the missing sink in the global CO2 budget has been attributed to the positive effects of CO2 fertilization and N deposition on carbon sequestration in Northern Hemisphere terrestrial ecosystems. The genus Sphagnum is one of the most important groups of plant species sequestrating carbon in temperate and northern bog ecosystems, because of the low decomposability of the dead material it produces. The effects of raised CO2 and increased atmospheric N deposition on growth of Sphagnum and other plants were studied in bogs at four sites across Western Europe. Contrary to expectations, elevated CO2 did not significantly affect Sphagnum biomass growth. Increased N deposition reduced Sphagnum mass growth, because it increased the cover of vascular plants and the tall moss Polytrichum strictum. Such changes in plant species composition may decrease carbon sequestration in Sphagnum-dominated bog ecosystems.
  • Publication
    Accès libre
    Discrepancies in Growth Measurement Methods of Mosses: An Example from Two Keystone Species Grown under Increased CO2 and N Supply in a Restored Peatland
    Siegenthaler, Andy
    ;
    Buttler, Alexandre
    ;
    Grosvernier, Philippe
    ;
    ;
    Bryophytes dominate northern peatlands. Obtaining reliable measurements of moss-growth and how it may be affected by global changes are therefore important. Several methods have been used to measure moss-growth but it is unclear how comparable they are in different conditions and this uncertainty undermines comparisons among studies. In a field experiment we measured the growth and production of Sphagnum fallax (Sphagnum) and Polytrichum strictum (Polytrichum) using two handling methods, using cut and uncut plants, and three growth-variables, heightgrowth, length-growth, and mass-growth. We aimed “benchmarking” a combination of six methodological options against exactly the same set of factorial experiments: atmospheric CO2 enrichment and N addition. The two handling methods produced partly different results: in half of the cases, one method revealed a significant treatment effect but the other one did not: significant negative effects on growth were only observed on uncut plants for elevated CO2 and on cut plants for N addition. Furthermore, the correspondence between measurements made with various growth-variables depended on the species and, to a lesser extent, treatments. Sphagnum and Polytrichum growth was inhibited under elevated CO2, and correlated to higher ammonium values. Sphagnum was however less affected than Polytrichum and the height difference between the two species decreased. N addition reduced the P/N ratio and probably induced P-limiting conditions. Sphagnum growth was more inhibited than Polytrichum and the height difference between the two species increased. Our data show that such a problem indeed exists between the cut and uncut handling methods. Not only do the results differ in absolute terms by as much as 82% but also do their comparisons and interpretations depend on the handling method—and thus the interpretation would be biased—in half of the cases. These results call for caution when comparing factorial studies based on different handling methods.