Voici les éléments 1 - 10 sur 44
  • Publication
    Accès libre
    Assessing the responses of Sphagnum micro-eukaryotes to climate changes using high throughput sequencing
    (2020-9-18) ;
    Seppey, Christophe Victor William
    ;
    ;
    Jassey, Vincent E.J.
    ;
    Buttler, Alexandre
    ;
    Slowinska, Sandra
    ;
    Slowinski, Michal
    ;
    ;
    Lamentowicz, Mariusz
    ;
    Current projections suggest that climate warming will be accompanied by more frequent and severe drought events. Peatlands store ca. one third of the world’s soil organic carbon. Warming and drought may cause peatlands to become carbon sources through stimulation of microbial activity increasing ecosystem respiration, with positive feedback effect on global warming. Micro-eukaryotes play a key role in the carbon cycle through food web interactions and therefore, alterations in their community structure and diversity may affect ecosystem functioning and could reflect these changes. We assessed the diversity and community composition of Sphagnum-associated eukaryotic microorganisms inhabiting peatlands and their response to experimental drought and warming using high throughput sequencing of environmental DNA. Under drier conditions, micro-eukaryotic diversity decreased, the relative abundance of autotrophs increased and that of osmotrophs (including Fungi and Peronosporomycetes) decreased. Furthermore, we identified climate change indicators that could be used as early indicators of change in peatland microbial communities and ecosystem functioning. The changes we observed indicate a shift towards a more “terrestrial” community in response to drought, in line with observed changes in the functioning of the ecosystem.
  • Publication
    Métadonnées seulement
    Response of forest soil euglyphid testate amoebae (Rhizaria: Cercozoa) to pig cadavers assessed by high-throughput sequencing
    Decomposing cadavers modify the soil environment, but the effect on soil organisms and especially on soil protists is still poorly documented. We conducted a 35-month experiment in a deciduous forest where soil samples were taken under pig cadavers, control plots and fake pigs (bags of similar volume as the pigs). We extracted total soil DNA, amplified the SSU ribosomal RNA (rRNA) gene V9 region and sequenced it by Illumina technology and analysed the data for euglyphid testate amoebae (Rhizaria: Euglyphida), a common group of protozoa known to respond to micro- environmental changes. We found 51 euglyphid operational taxonomic units (OTUs), 45 of which did not match any known sequence. Most OTUs decreased in abundance underneath cadavers between days 0 and 309, but some responded positively after a time lag. We sequenced the full-length SSU rRNA gene of two common OTUs that responded positively to cadavers; a phylogenetic analysis showed that they did not belong to any known euglyphid family. This study confirmed the existence of an unknown diversity of euglyphids and that they react to cadavers. Results suggest that metabarcoding of soil euglyphids could be used as a forensic tool to estimate the post-mortem interval (PMI) particularly for long-term (>2 months) PMI, for which no reliable tool exists.
  • Publication
    Métadonnées seulement
    Ecology of testate amoebae in peatlands of central China and development of a transfer function for paleohydrological reconstruction
    (2013) ; ;
    Lamentowicz, Mariusz
    ;
    Payne, Richard J.
    ;
    ;
    Gu, Yansheng
    ;
    Huang, Xianyu
    ;
    Wang, Hongmei
    Testate amoebae are a diverse and abundant group of protozoa that constitute a large proportion of biomass in many ecosystems and probably fill important roles in ecosystem function. These microorganisms have attracted the interest of paleoecologists because the preserved shells of testate amoebae and their known hydrological preferences enable reconstruction of past hydrological change. In ombrotrophic peatlands, surface wetness reflects hydroclimate, so testate amoebae can play an important role in reconstruction of Holocene climate change. Previous studies, however, have been geographically restricted, mostly to North America and Europe. We studied the ecology of testate amoebae in peatlands from central China in relation to hydrology, pH and metal concentrations. We found that testate amoeba community structure was correlated with depth to water table (DWT) and that the hydrological preferences of species generally matched those of previous studies. We developed a weighted average DWT transfer function that enables prediction of water table depth with a cross-validated mean error of < 5 cm. Our results demonstrate the potential for using testate amoebae to reconstruct paleohydrology in China. Such studies could contribute to our understanding of Holocene climate changes in China, particularly regarding past Asian monsoon activity.
  • Publication
    Métadonnées seulement
    Using DNA-barcoding for sorting out protist species complexes: A case study of the Nebela tincta-collaris-bohemica group (Amoebozoa; Arcellinida, Hyalospheniidae)
    (2013) ;
    Gomaa, Fatma
    ;
    ;
    Heger, Thierry J.
    ;
    Species identification by means of morphology is often problematic in protists. Nebela tincta-collaris-bohemica (Arcellinida) is a species complex of small to medium-sized (ca. 100 mu m) testate amoebae common in peat bogs and forest soils. The taxonomic validity of characters used to define species within this group is debated and causes confusion in studies of biogeography, and applications in palaeoecology. We examined the relationship between morphological and genetic diversity within this species complex by combined analyses of light microscopy imaging and Cytochrome Oxidase Subunit 1(COI) sequences obtained from the same individual amoeba cells. Our goals were (1) to clarify the taxonomy and the phylogenetic relationships within this group, and (2) to evaluate if individual genotypes corresponded to specific morphotypes and the extent of phenotypic plasticity. We show here that small variations in test morphology that have been often overlooked by traditional taxonomy correspond to distinct haplotypes. We therefore revise the taxonomy of the group. We redefine Nebela tincta (Leidy) Kosakyan et Lara and N. collaris (Ehrenberg 1848) Kosakyan et Gomaa, change N. tincta var. rotunda Penard to N. rotunda (Penard 1890), describe three new species: N. guttata n. sp. Kosakyan et Lara, N. pechorensis n. sp. Kosakyan et Mitchell, and N. aliciae n. sp. Mitchell et Lara. (C) 2012 Elsevier GmbH. All rights reserved.
  • Publication
    Métadonnées seulement
    Relationships between testate amoeba communities and water quality in Lake Donghu, a large alkaline lake in Wuhan, China
    (2013) ; ; ;
    Gu, Yansheng
    ;
    Wang, Hongmei
    ;
    Cui, Yongde
    ;
    Zhang, Xiaoke
    ;
    The middle Yangtze Reach is one of the most developed regions of China. As a result, most lakes in this area have suffered from eutrophication and serious environmental pollution during recent decades. The aquatic biodiversity in the lakes of the area is thus currently under significant threat from continuous human activities. Testate amoebae (TA) are benthic (rarely planktonic) microorganisms characterized by an agglutinated or autogenous shell. Owing to their high abundance, preservation potential in lacustrine sediments, and distinct response to environmental stress, they are increasingly used as indicators for monitoring water quality and reconstructing palaeoenvironmental changes. However this approach has not yet been developed in China. This study presents an initial assessment of benthic TA assemblages in eight lakes of Lake Donghu in the region of Wuhan, China. Testate amoeba community structure was most strongly correlated to water pH. In more alkaline conditions, communities were dominated by Centropyxis aculeata, Difflugia oblonga, Pontigulasia compressa, Pon. elisa and Lesquereusia modesta. These results are consistent with previous studies and show that TA could be useful for reconstructing past water pH fluctuations in China. To achieve this, the next step will be to expand the database and build transfer function models.
  • Publication
    Métadonnées seulement
    The Revised Classification of Eukaryotes (vol 59, pg 429, 2012)
    (2013)
    Adl, Sina M.
    ;
    Simpson, Alastair G. B.
    ;
    Lane, Christopher E.
    ;
    Lukes, Julius
    ;
    Bass, David
    ;
    Bowser, Samuel S.
    ;
    Brown, Matthew W.
    ;
    Burki, Fabien
    ;
    Dunthorn, Micah
    ;
    Hampl, Vladimir
    ;
    Heiss, Aaron
    ;
    Hoppenrath, M.
    ;
    ;
    le Gall, Line
    ;
    Lynn, Denis H.
    ;
    McManus, Hilary
    ;
    ;
    Mozley-Stanridge, Sharon E.
    ;
    Parfrey, Laura Wegener
    ;
    Pawlowski, Jan
    ;
    Rueckert, Sonja
    ;
    Shadwick, Laura
    ;
    Schoch, Conrad L.
    ;
    Smirnov, Alexey
    ;
    Spiegel, Frederick W.
  • Publication
    Métadonnées seulement
    Amphitremida (Poche, 1913) Is a New Major, Ubiquitous Labyrinthulomycete Clade
    (2013)
    Gomaa, Fatma
    ;
    ;
    Micro-eukaryotic diversity is poorly documented at all taxonomic levels and the phylogenetic affiliation of many taxa - including many well-known and common organisms - remains unknown. Among these incertae sedis taxa are Archerella flavum (Loeblich and Tappan, 1961) and Amphitrema wrightianum (Archer, 1869) (Amphitremidae), two filose testate amoebae commonly found in Sphagnum peatlands. To clarify their phylogenetic position, we amplified and sequenced the SSU rRNA gene obtained from four independent DNA extractions of A. flavum and three independent DNA extractions of A. wrightianum. Our molecular data demonstrate that genera Archerella and Amphitrema form a fully supported deep-branching clade within the Labyrinthulomycetes (Stramenopiles), together with Diplophrys sp. (ATCC50360) and several environmental clones obtained from a wide range of environments. This newly described clade we named Amphitremida is diverse genetically, ecologically and physiologically. Our phylogenetic analysis suggests that osmotrophic species evolved most likely from phagotrophic ancestors and that the bothrosome, an organelle that produces cytoplasmic networks used for attachment to the substratum and to absorb nutrients from the environments, appeared lately in labyrithulomycete evolution.
  • Publication
    Accès libre
    rRNA Phylogeny of Arcellinida (Amoebozoa) Reveals that the Largest Arcellinid Genus, Difflugia Leclerc 1815, is not Monophyletic
    (2012)
    Gomaa, Fatma
    ;
    Todorov, Milcho
    ;
    Heger, Thierry J.
    ;
    ;
    The systematics of lobose testate amoebae (Arcellinida), a diverse group of shelled free-living unicellular eukaryotes, is still mostly based on morphological criteria such as shell shape and composition. Few molecular phylogenetic studies have been performed on these organisms to date, and their phylogeny suffers from typical under-sampling artefacts, resulting in a still mostly unresolved tree. In order to clarify the phylogenetic relationships among arcellinid testate amoebae at the inter-generic and inter-specific level, and to evaluate the validity of the criteria used for taxonomy, we amplified and sequenced the SSU rRNA gene of nine taxa - Difflugia bacillariarum, D. hiraethogii, D. acuminata, D. lanceolata, D. achlora, Bullinularia gracilis, Netzelia oviformis, Physochila griseola and Cryptodifflugia oviformis. Our results, combined with existing data demonstrate the following: 1) Most arcellinids are divided into two major clades, 2) the genus Difflugia is not monophyletic, and the genera Netzelia and Arcella are closely related, and 3) Cryptodifflugia branches at the base of the Arcellinida clade. These results contradict the traditional taxonomy based on shell composition, and emphasize the importance of general shell shape in the taxonomy of arcellinid testate amoebae.
  • Publication
    Métadonnées seulement
    Time to regulate microbial eukaryote nomenclature
    (2012)
    Lahr, Daniel J. G.
    ;
    ;
    Nomenclature of microbial eukaryotes has been historically relegated to secondary importance. This is a legacy of the traditional classification of life into the most studied multicellular forms (plants, fungi, and animals). Despite the revolution in an understanding of eukaryotic diversity and relationships that has been achieved as a result of the use of molecular techniques, the description of microbial eukaryote genera and species is more difficult today than in the past. Researchers are at liberty to choose between the botanical (in the traditional sense) and zoological codes of nomenclature, although there is no obligation to comply with either. We demonstrate that, by combining the foci of different nomenclature codes with the current knowledge of relationships, a large number of genera and species end up being regulated by two codes (Patterson's ambiregnal taxa) and, in some cases, may even be regulated by none. We briefly present historically proposed types of solutions to this problem, and propose that an elaboration of authoritative guidelines to regulate the nomenclature of microbial eukaryotes by the community of researchers is most appropriate at this time. Most importantly, we plead to the community of researchers to resolve this centuries old outstanding issue. (C) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, , .
  • Publication
    Métadonnées seulement
    The Revised Classification of Eukaryotes
    (2012)
    Adl, Sina M.
    ;
    Simpson, Alastair G. B.
    ;
    Lane, Christopher E.
    ;
    Lukes, Julius
    ;
    Bass, David
    ;
    Bowser, Samuel S.
    ;
    Brown, Matthew W.
    ;
    Burki, Fabien
    ;
    Dunthorn, Micah
    ;
    Hampl, Vladimir
    ;
    Heiss, Aaron
    ;
    Hoppenrath, Mona
    ;
    ;
    le Gall, Line
    ;
    Lynn, Denis H.
    ;
    McManus, Hilary
    ;
    ;
    Mozley-Stanridge, Sharon E.
    ;
    Parfrey, Laura Wegener
    ;
    Pawlowski, Jan
    ;
    Rueckert, Sonja
    ;
    Shadwick, Laura
    ;
    Schoch, Conrad L.
    ;
    Smirnov, Alexey
    ;
    Spiegel, Frederick W.
    This revision of the classification of eukaryotes, which updates that of Adl etal. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information.