Voici les éléments 1 - 7 sur 7
  • Publication
    Métadonnées seulement
    Using DNA-barcoding for sorting out protist species complexes: A case study of the Nebela tincta-collaris-bohemica group (Amoebozoa; Arcellinida, Hyalospheniidae)
    (2013) ;
    Gomaa, Fatma
    ;
    ;
    Heger, Thierry J.
    ;
    Species identification by means of morphology is often problematic in protists. Nebela tincta-collaris-bohemica (Arcellinida) is a species complex of small to medium-sized (ca. 100 mu m) testate amoebae common in peat bogs and forest soils. The taxonomic validity of characters used to define species within this group is debated and causes confusion in studies of biogeography, and applications in palaeoecology. We examined the relationship between morphological and genetic diversity within this species complex by combined analyses of light microscopy imaging and Cytochrome Oxidase Subunit 1(COI) sequences obtained from the same individual amoeba cells. Our goals were (1) to clarify the taxonomy and the phylogenetic relationships within this group, and (2) to evaluate if individual genotypes corresponded to specific morphotypes and the extent of phenotypic plasticity. We show here that small variations in test morphology that have been often overlooked by traditional taxonomy correspond to distinct haplotypes. We therefore revise the taxonomy of the group. We redefine Nebela tincta (Leidy) Kosakyan et Lara and N. collaris (Ehrenberg 1848) Kosakyan et Gomaa, change N. tincta var. rotunda Penard to N. rotunda (Penard 1890), describe three new species: N. guttata n. sp. Kosakyan et Lara, N. pechorensis n. sp. Kosakyan et Mitchell, and N. aliciae n. sp. Mitchell et Lara. (C) 2012 Elsevier GmbH. All rights reserved.
  • Publication
    Métadonnées seulement
    Amphitremida (Poche, 1913) Is a New Major, Ubiquitous Labyrinthulomycete Clade
    (2013)
    Gomaa, Fatma
    ;
    ;
    Micro-eukaryotic diversity is poorly documented at all taxonomic levels and the phylogenetic affiliation of many taxa - including many well-known and common organisms - remains unknown. Among these incertae sedis taxa are Archerella flavum (Loeblich and Tappan, 1961) and Amphitrema wrightianum (Archer, 1869) (Amphitremidae), two filose testate amoebae commonly found in Sphagnum peatlands. To clarify their phylogenetic position, we amplified and sequenced the SSU rRNA gene obtained from four independent DNA extractions of A. flavum and three independent DNA extractions of A. wrightianum. Our molecular data demonstrate that genera Archerella and Amphitrema form a fully supported deep-branching clade within the Labyrinthulomycetes (Stramenopiles), together with Diplophrys sp. (ATCC50360) and several environmental clones obtained from a wide range of environments. This newly described clade we named Amphitremida is diverse genetically, ecologically and physiologically. Our phylogenetic analysis suggests that osmotrophic species evolved most likely from phagotrophic ancestors and that the bothrosome, an organelle that produces cytoplasmic networks used for attachment to the substratum and to absorb nutrients from the environments, appeared lately in labyrithulomycete evolution.
  • Publication
    Métadonnées seulement
    SSU rRNA Phylogeny of Arcellinida (Amoebozoa) Reveals that the Largest Arcellinid Genus, Difflugia Leclerc 1815, is not Monophyletic
    (2012)
    Gomaa, Fatma
    ;
    Todorov, Milcho
    ;
    Heger, Thierry J.
    ;
    ;
    The systematics of lobose testate amoebae (Arcellinida), a diverse group of shelled free-living unicellular eukaryotes, is still mostly based on morphological criteria such as shell shape and composition. Few molecular phylogenetic studies have been performed on these organisms to date, and their phylogeny suffers from typical under-sampling artefacts, resulting in a still mostly unresolved tree. In order to clarify the phylogenetic relationships among arcellinid testate amoebae at the inter-generic and inter-specific level, and to evaluate the validity of the criteria used for taxonomy, we amplified and sequenced the SSU rRNA gene of nine taxa - Difflugia bacillariarum, D. hiraethogii, D. acuminata, D. lanceolata, D. achlora, Bullinularia gracilis, Netzelia oviformis, Physochila griseola and Cryptodifflugia oviformis. Our results, combined with existing data demonstrate the following: 1) Most arcellinids are divided into two major clades, 2) the genus Difflugia is not monophyletic, and the genera Netzelia and Arcella are closely related, and 3) Cryptodifflugia branches at the base of the Arcellinida clade. These results contradict the traditional taxonomy based on shell composition, and emphasize the importance of general shell shape in the taxonomy of arcellinid testate amoebae. (C) 2012 Elsevier GmbH. All rights reserved.
  • Publication
    Accès libre
    rRNA Phylogeny of Arcellinida (Amoebozoa) Reveals that the Largest Arcellinid Genus, Difflugia Leclerc 1815, is not Monophyletic
    (2012)
    Gomaa, Fatma
    ;
    Todorov, Milcho
    ;
    Heger, Thierry J.
    ;
    ;
    The systematics of lobose testate amoebae (Arcellinida), a diverse group of shelled free-living unicellular eukaryotes, is still mostly based on morphological criteria such as shell shape and composition. Few molecular phylogenetic studies have been performed on these organisms to date, and their phylogeny suffers from typical under-sampling artefacts, resulting in a still mostly unresolved tree. In order to clarify the phylogenetic relationships among arcellinid testate amoebae at the inter-generic and inter-specific level, and to evaluate the validity of the criteria used for taxonomy, we amplified and sequenced the SSU rRNA gene of nine taxa - Difflugia bacillariarum, D. hiraethogii, D. acuminata, D. lanceolata, D. achlora, Bullinularia gracilis, Netzelia oviformis, Physochila griseola and Cryptodifflugia oviformis. Our results, combined with existing data demonstrate the following: 1) Most arcellinids are divided into two major clades, 2) the genus Difflugia is not monophyletic, and the genera Netzelia and Arcella are closely related, and 3) Cryptodifflugia branches at the base of the Arcellinida clade. These results contradict the traditional taxonomy based on shell composition, and emphasize the importance of general shell shape in the taxonomy of arcellinid testate amoebae.
  • Publication
    Accès libre
    Morphological and Molecular Diversification of Asian Endemic Difflugia tuberspinifera (Amoebozoa, Arcellinida): A Case of Fast Morphological Evolution in Protists?
    Gomaa, Fatma
    ;
    Yang, Jun
    ;
    ;
    Zhang, Wen-Jing
    ;
    Yu, Zheng
    ;
    Todorov, Milcho
    ;
    Planktonic arcellinid testate amoebae exhibit a broad-range of morphological variability but it is currently unclear to what extent this variability represents phenotypic plasticity or if it is genetically determined. We investigated the morphology and phylogenetic relationships of three endemic east-asian Difflugia taxa 1) the vase-shaped D. mulanensis, 2) and a spinose and a spineless morphotypes of D. tuberspinifera using scanning electron microscopy and two ribosomal genetic markers (SSU rDNA and ITS sequences). Our phylogenetic analyses shows that all three taxa are genetically distinct and closely related to D. achlora and Netzelia oviformis. The genetic variations between the spineless and spinose morphotypes of D. tuberspinifera were low at the SSU rRNA level (0.4%), but ten times higher at the ITS level (4.5-6%). Our data suggest that the two forms of D. tuberspinifera are sufficiently differentiated in terms of morphology and genetic characteristics to constitute two separate entities and that the presence of spines does not result from phenotypic plasticity due to environmental selective pressure. However further observational and experimental data are needed to determine if these two forms constitute different biological species.
  • Publication
    Accès libre
    One Alga to Rule them All: Unrelated Mixotrophic Testate Amoebae (Amoebozoa, Rhizaria and Stramenopiles) Share the Same Symbiont (Trebouxiophyceae)
    Gomaa, Fatma
    ;
    ;
    Heger, Thierry J
    ;
    Corsaro, Daniele
    ;
    ;
    Endosymbiosis is a central and much studied process in the evolution of eukaryotes. While plastid evolution in eukaryotic algae has been extensively studied, much less is known about the evolution of mixotrophy in amoeboid protists, which has been found in three of the five super groups of Eukaryotes. We identified the green endosymbionts in four obligate mixotrophic testate amoeba species belonging to three major eukaryotic clades, Hyalosphenia papilio and Heleopera sphagni (Amoebozoa: Arcellinida), Placocista spinosa (Rhizaria: Euglyphida), and Archerella flavum (Stramenopiles: Labyrinthulomycetes) based on rbcL (ribulose-1,5-diphosphate carboxylase/oxygenase large subunit) gene sequences. We further investigated whether there were different phylotypes of algal endosymbionts within single H. papilio cells and the degree of host-symbiont specificity by amplifying two genes: COI (mitochondrial cytochrome oxydase subunit 1) from the testate amoeba host, and rbcL from the endosymbiont. Results show that all studied endosymbionts belong to genus Chlorella sensu stricto, closely related to Paramecium bursaria Chlorella symbionts, some lichen symbionts and also several free-living algae. Most rbcL gene sequences derived from symbionts from all testate amoeba species were almost identical (at most 3 silent nucleotides difference out of 780 bp) and were assigned to a new Trebouxiophyceae taxon we named TACS (Testate Amoeba Chlorella Symbionts). This “one alga fits all mixotrophic testate amoeba” pattern suggests that photosynthetic symbionts have pre-adaptations to endosymbiosis and colonise diverse hosts from a free-living stage.
  • Publication
    Accès libre
    Using DNA-barcoding for sorting out protest species complexes:: A case study of the Nebela tincta–collaris–bohemica group (Amoebozoa; Arcellinida, Hyalospheniidae)
    ;
    Gomaa, Fatma
    ;
    ;
    Heger, Thierry J.
    ;
    Species identification by means of morphology is often problematic in protists. Nebela tincta–collaris–bohemica (Arcellinida) is a species complex of small to medium-sized (ca.100 μm) testate amoebae common in peat bogs and forest soils. The taxonomic validity of characters used to define species within this group is debated and causes confusion in studies of biogeography, and applications in palaeoecology.
    We examined the relationship between morphological and genetic diversity within this species complex by combined analyses of light microscopy imaging and Cytochrome Oxidase Subunit 1(COI) sequences obtained from the same individual amoeba cells. Our goals were (1) to clarify the taxonomy and the phylogenetic relationships within this group, and (2) to evaluate if individual genotypes corresponded to specific morphotypes and the extent of phenotypic plasticity.
    We show here that small variations in test morphology that have been often overlooked by traditional taxonomy correspond to distinct haplotypes. We therefore revise the taxonomy of the group. We redefine Nebela tincta (Leidy) Kosakyan et Lara and N. collaris (Ehrenberg 1848) Kosakyan et Gomaa, change N. tincta var. rotunda Penard to N. rotunda (Penard 1890), describe three new species: N. guttata n. sp. Kosakyan et Lara, N. pechorensis n. sp. Kosakyan et Mitchell, and N. aliciae n. sp. Mitchell et Lara.