Voici les éléments 1 - 10 sur 26
  • Publication
    Accès libre
    Response of Sphagnum Peatland Testate Amoebae to a 1-Year Transplantation Experiment Along an Artificial Hydrological Gradient
    (2014-2-1)
    Marcisz, Katarzyna
    ;
    ;
    Gilbert, Daniel
    ;
    Lamentowicz, Mariusz
    ;
    Peatland testate amoebae (TA) are well-established bioindicators for depth to water table (DWT), but effects of hydrological changes on TA communities have never been tested experimentally. We tested this in a field experiment by placing Sphagnum carpets (15 cm diameter) collected in hummock, lawn and pool microsites (origin) at three local conditions (dry, moist and wet) using trenches dug in a peatland. One series of samples was seeded with microorganism extract from all microsites. TA community were analysed at T0: 8–2008, T1: 5–2009 and T2: 8–2009. We analysed the data using conditional inference trees, principal response curves (PRC) and DWT inferred from TA communities using a transfer function used for paleoecological reconstruction. Density declined from T0 to T1 and then increased sharply by T2. Species richness, Simpson diversity and Simpson evenness were lower at T2 than at T0 and T1. Seeded communities had higher species richness in pool samples at T0. Pool samples tended to have higher density, lower species richness, Simpson diversity and Simpson Evenness than hummock and/or lawn samples until T1. In the PRC, the effect of origin was significant at T0 and T1, but the effect faded away by T2. Seeding effect was strongest at T1 and lowest vanished by T2. Local condition effect was strong but not in line with the wetness gradient at T1 but started to reflect it by T2. Likewise, TA-inferredDWTstarted to match the experimental conditions by T2, but more so in hummock and lawn samples than in pool samples. This study confirmed that TA responds to hydrological changes over a 1-year period. However, sensitivity of TA to hydrological fluctuations, and thus the accuracy of inferred DWT changes, was habitat specific, pool TA communities being least responsive to environmental changes. Lawns and hummocks may be thus better suited than pools for paleoecological reconstructions. This, however, contrasts with the higher prediction error and species’ tolerance for DWT with increasing dryness observed in transfer function models.
  • Publication
    Accès libre
    Fine-Scale Horizontal and Vertical Micro-distribution Patterns of Testate Amoebae Along a Narrow Fen/Bog Gradient
    (2011)
    Jassey, Vincent E. J.
    ;
    Chiapusio, Geneviève
    ;
    ;
    Binet, Philippe
    ;
    Toussaint, Marie-Laure
    ;
    Gilbert, Daniel
    The ecology of peatland testate amoebae is well studied along broad gradient from very wet (pool) to dry (hummock) micro-sites where testate amoebae are often found to respond primarily to the depth to water table (DWT). Much less is known on their responses to finer-scale gradients, and nothing is known of their possible response to phenolic compounds, which play a key role in carbon storage in peatlands. We studied the vertical (0–3, 3–6, and 6–9 cm sampling depths) micro-distribution patterns of testate amoebae in the same microhabitat (Sphagnum fallax lawn) along a narrow ecological gradient between a poor fen with an almost flat and homogeneous Sphagnum carpet (fen) and a “young bog” (bog) with more marked micro-topography and mosaic of poor fen and bog vegetation. We analyzed the relationships between the testate amoeba data and three sets of variables (1) “chemical” (pH, Eh potential, and conductivity), (2) “physical” (water temperature, altitude, i.e., Sphagnum mat micro-topography, and DWT), and (3) phenolic compounds in/from Sphagnum (water-soluble and primarily bound phenolics) as well as the habitat (fen/bog) and the sampling depth. Testate amoeba Shannon H′ diversity, equitability J of communities, and total density peaked in lower parts of Sphagnum, but the patterns differed between the fen and bog micro-sites. Redundancy analyses revealed that testate amoeba communities differed significantly in relation to Eh, conductivity, water temperature, altitude, water-soluble phenolics, habitat, and sampling depth, but not to DWT, pH, or primarily bound phenolics. The sensitivity of testate amoebae to weak environmental gradients makes them particularly good integrators of micro-environmental variations and has implications for their use in paleoecology and environmental monitoring. The correlation between testate amoeba communities and the concentration of water-soluble phenolic suggests direct (e.g., physiological) and/or indirect (e.g., through impact on prey organisms) effects on testate amoebae, which requires further research.
  • Publication
    Accès libre
    Response of testate amoeba assemblages to environmental and climatic changes during the Lateglacial–Holocene transition at Lake Lautrey (Jura Mountains, eastern France)
    (2010)
    Wall, Adeline A. J.
    ;
    Magny, Michel
    ;
    ;
    Vannière, Boris
    ;
    Gilbert, Daniel
    We tested the response of lacustrine testate amoebae (thecamoebians) to climate and environmental changes for the Lateglacial–Holocene transition. The palaeoenvironmental history of the study site (Lake Lautrey, Jura Mountains, eastern France) was previously established based on high-resolution multi-proxy studies of the same core. The present study is characterised by a high taxonomic resolution (54 taxa), inclusion of small species (down to 25 µm) and high total counts (>500 individuals per sample on average). Changes in the composition of testate amoeba assemblages (dominant species and assemblage structure), as well as in the accumulation rate (tests cm−2 a−1), corresponded to major climatic phases (i.e. Oldest Dryas, Bølling–Allerød Interstadial, Younger Dryas, Preboreal) as well as changes in organic matter inputs. Furthermore, decreases in the accumulation rate characterised minor short-lived cooling events, such as Older Dryas event or Gerzensee oscillation. However, the Preboreal oscillation, which was well registered by other proxies at Lake Lautrey, could not be recognised in the testate amoeba record. This work demonstrates that lacustrine testate amoebae can be used for palaeoclimatic and palaeoecological reconstructions. Nevertheless, a better understanding of the relation between climate, organic matter and lacustrine testate amoebae requires further high-resolution studies based on multi-proxy approaches and the development of appropriate modern analogues.
  • Publication
    Accès libre
    Testate amoeba analysis of lake sediments: impact of filter size and total count on estimates of density, species richness and assemblage structure
    (2010)
    Wall, Adeline A. J.
    ;
    Gilbert, Daniel
    ;
    Magny, Michel
    ;
    Testate amoebae are informative about palaeoecological conditions, but the methods generally used for their analyses in lake sediments differ from those used for their analyses in peats, making comparisons difficult. This study examines how filter mesh size and total number of individuals counted affect species richness, Shannon diversity, equitability, density and assemblage structure. We analysed the complete testate amoeba contents of six sediment samples from Lake Lautrey, France. The abundance of testate amoebae was high (1,403–10,870 shells cm−3), and species smaller than 63 μm in both length and width represented up to 89% of total abundance and 43% of species richness. A simulation showed that using 47- or 63-μm mesh-size filters reduced inter-sample differences and changed the patterns of abundance, species richness and assemblage structure, causing loss of information and leading to potential erroneous palaeoecological interpretation. Rarefaction analyses suggest that although 170 shells are sufficient to assess the general structure of assemblages, such small sample sizes can underestimate species richness by overlooking taxa with relative abundances <4%. Total counts of 400 shells yield better estimates of assemblage structure and recover at least 50% of total species richness, although species with absolute frequencies below 2% may still be missed. Higher counts are required to obtain reliable estimates of species richness and assemblage structure in samples that have high testate amoeba densities but are dominated by a few small taxa. Further studies should determine the bioindicator value and functional roles of small and/or rare species in lakes and thus to what extent overlooking them affects palaeoecological interpretations.
  • Publication
    Accès libre
    Functional microbial diversity in regenerating cutover peatlands responds to vegetation succession
    (2008)
    Artz, Rebekka R. E.
    ;
    Chapman, Stephen J.
    ;
    Siegenthaler, Andy
    ;
    ;
    Buttler, Alexandre
    ;
    Bortoluzzi, Estelle
    ;
    Gilbert, Daniel
    ;
    Yli-Petays, Mika
    ;
    Vasander, Harri
    ;
    Francez, André-Jean
    1. While establishment of vegetation is the most visual indicator of regeneration on cutover peatland, the reinstatement of belowground functions is less well understood. Vegetation succession results in differences in peat quality in terms of C availability. The respiratory response of the soil microbial community to ecologically relevant substrates (community-level physiological profile, CLPP) such as those found in rhizosphere exudates and litter hydrolysates, is thought to reflect the activity and functional diversity of the soil microbial community, especially those involved in turnover of soluble photosynthate-derived C.
    2. The relationship between CLPP and typical regeneration stages was investigated at five European peatlands, each with up to five sites representing a gradient of natural regeneration stages. We aimed to determine whether unaided revegetation consistently affected soil microbial CLPP, which environmental factors explained variation in CLPP on the scale of individual peatlands, and if these factors were consistent across different peatlands.
    3. Within each peatland, a decomposition index based on diagnostic bands in Fourier transform-infrared spectra indicated that regeneration had generally started from a common base and that the influence of vegetation on the decomposition index declined with depth. In parallel, differences in vegetation cover between regeneration stages resulted in significantly different CLPP, but this effect decreased rapidly with soil depth. The magnitudes of the effect of vegetation succession versus soil depth appeared to be linked with the age range of the regeneration gradients. Hence, the effect of vegetation on CLPP is effectively diluted due to the remaining organic matter. Specific plant species described significant proportions of CLPP variability but these species were not consistent across peatland types. The effects of soil depth appeared to be peatland-specific.
    4. Synthesis and applications. Together, the results indicate significant responses of the microbial community to vegetation succession, with the strength of the effect probably dependent on quantities of labile C allocation to the soil microbial community. Therefore, particularly in the early stages of regeneration of cutover peatlands, CLPP could provide vital information about the relative importance of different plant functional types on potential rates of labile C turnover.
  • Publication
    Accès libre
    Effects of experimental warming on carbon sink function of a temperate pristine mire : the PEATWARM project
    (2008)
    Laggoun-Défarge, Fatima
    ;
    Gilbert, Daniel
    ;
    Buttler, Alexandre
    ;
    Epron, Daniel
    ;
    Francez, Andre-Jean
    ;
    Grasset, Laurent
    ;
    ;
    Guimbaud, Christophe
    ;
    Roy, J.-C.
    Within the PEATWARM project, we use Sphagnumpeatlands as a model to analyse their vulnerability to climate change using an experimental system (ITEX) that simulates in situan increase in average temperature. We aim to determine the effects of temperature increase on the vegetation, the balance of above- and belowground gas fluxes (CO2and CH4), the microbial diversity and activity in Sphagnummosses and in peat, and the dynamics of labile and recalcitrant organic matter of peat. The ultimate objective is the creation of a biogeochemical model of C coupled with N and S cycles that includes interactions between these key compartments.
  • Publication
    Accès libre
    Effect of lead pollution on testate amoebae communities living in Sphagnum fallax: An experimental study
    (2008)
    Nguyen Viet, Hung
    ;
    Bernard, Nadine
    ;
    ;
    Badot, Pierre-Marie
    ;
    Gilbert, Daniel
    We studied the effects of lead pollution on testate amoebae communities living on Sphagnum fallax by growing this moss under controlled conditions. A progressive series of lead (Pb) concentration was used in the growing solution of the mosses: 0 (control), 625 and 2500 μg L−1. The mosses were sampled and analysed for accumulated Pb and testate amoeba communities after 0, 6, 12, and 20 weeks. Species richness, total density and total biomass of testate amoebae declined in response to the Pb treatment and changed over time. The Pb×Time cross-effect was significant for species richness, and total density but not for the total biomass and Shannon diversity. Furthermore, the testate amoebae species richness and the total density were negatively correlated to the Pb concentrations actually accumulated in the moss at the end of the experiment. Species-specific responses of testate amoebae to Pb pollution were identified. Our results thus confirm the sensitivity of testate amoebae to lead pollution.
  • Publication
    Accès libre
    Effects of Experimental Lead Pollution on the Microbial Communities Associated with Sphagnum fallax (Bryophyta)
    (2007)
    Nguyen Viet, Hung
    ;
    Gilbert, Daniel
    ;
    ;
    Badot, Pierre-Marie
    ;
    Bernard, Nadine
    Ecotoxicological studies usually focus on single microbial species under controlled conditions. As a result, little is known about the responses of different microbial functional groups or individual species to stresses. In an aim to assess the response of complex microbial communities to pollution in their natural habitat, we studied the effect of a simulated lead pollution on the microbial community (bacteria, cyanobacteria, protists, fungi, and micrometazoa) living on Sphagnum fallax. Mosses were grown in the laboratory with 0 (control), 625, and 2,500 μg L−1 of Pb2+ diluted in a standard nutrient solution and were sampled after 0, 6, 12, and 20 weeks. The biomasses of bacteria, microalgae, testate amoebae, and ciliates were dramatically and significantly decreased in both Pb addition treatments after 6, 12, and 20 weeks in comparison with the control. The biomass of cyanobacteria declined after 6 and 12 weeks in the highest Pb treatment. The biomasses of fungi, rotifers, and nematodes decreased along the duration of the experiment but were not significantly affected by lead addition. Consequently, the total microbial biomass was lower for both Pb addition treatments after 12 and 20 weeks than in the controls. The community structure was strongly modified due to changes in the densities of testate amoebae and ciliates, whereas the relative contribution of bacteria to the microbial biomass was stable. Differences in responses among the microbial groups suggest changes in the trophic links among them. The correlation between the biomass of bacteria and that of ciliates or testate amoebae increased with increasing Pb loading. We interpret this result as an effect on the grazing pathways of these predators and by the Pb effect on other potential prey (i.e., smaller protists). The community approach used here complements classical ecotoxicological studies by providing clues to the complex effect of pollutant-affecting organisms both directly and indirectly through trophic effects and could potentially find applications for pollution monitoring.
  • Publication
    Accès libre
    Relationship Between Testate Amoeba (Protist) Communities and Atmospheric Heavy Metals Accumulated in Barbula indica (Bryophyta) in Vietnam
    (2007)
    Nguyen Viet, Hung
    ;
    Bernard, Nadine
    ;
    ;
    Cortet, J.
    ;
    Badot, Pierre-Marie
    ;
    Gilbert, Daniel
    We studied the relationships between testate amoeba communities and heavy metal (Pb, Cd, Zn, Ni, Cu, Mn, and Fe) concentrations in the moss Barbula indica sampled at 29 sites in and around the city of Hanoi (Vietnam). Our first approach was to compare the heavy metal concentrations and testate amoeba variables between the city (zone 1) and the surrounding (zone 2). Mean moss concentrations of Pb, Cd, Zn, Ni, and Cu were significantly higher and testate amoeba species richness and abundance were significantly lower in zone 1 and the abundance of eight taxa differed significantly between the two zones. We then studied the correlation between heavy metals and testate amoebae. Species richness and abundance were correlated negatively to Pb concentration. Shannon H′ was negatively correlated to both Pb and Cd. The abundance of several species was negatively correlated with Pb, Cd, Zn, and Ni; however, at the community level, Pb emerged as the only significant variable in a redundancy analysis. Our results suggest that testate amoebae are sensitive to and may be good bioindicators for heavy metal pollution, especially lead. Further research is needed to understand the causal relationships underlying the observed patterns.