Options
Aragno, Michel
Nom
Aragno, Michel
Affiliation principale
Email
Michel.Aragno@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 6 sur 6
- PublicationAccès libreSpatio-temporal dynamics of bacterial communities associated with two plant species differing in organic acid secretion: A one-year microcosm study on lupin and wheat(2008)
;Weisskopf, Laure; ;Kohler, Florian ;Page, Valérie ;Jossi, Maryline; ;Martinoia, EnricoPlants are generally assumed to influence the surrounding soil microflora through rhizodeposition. However, the role of rhizodeposits, and especially organic acids, in structuring the bacterial communities is still poorly understood. In this study, we asked the question whether plants differing in organic acid secretion have a different impact on the soil bacterial communities, and if this is the case, to which extent this impact is due to different organic acid concentrations in the rhizosphere. To investigate this question, we compared white lupin and wheat. The former is a high organic acid-secreting species, while the latter secretes only low amounts of carboxylates. We grew the plants in large microcosms including root-free control compartments for one year (replanted every second month) and analyzed the spatio-temporal changes in soil ATP concentrations, as well as in diversity and structure of bacterial communities (using DNA- and RNA-based DGGE) along a root-soil gradient after two, six and twelve month's cultivation. Our results showed: i) that white lupin and wheat differed in their impact on soil ATP concentrations and on the structure of root bacterial communities; ii) that cultivation time was a key factor in explaining the observed differences in all the parameters studied; and iii) that the amounts of organic acids accounted for a significant proportion (15%) of the variability within root active communities. These results indicate that plants influence their associated bacterial communities in a species-specific way and that for communities living in the direct vicinity of roots (rhizoplane-endorhizosphere), a significant part of this influence can be attributed to root-secreted organic acids. - PublicationAccès libreRhizosphere bacterial communities associated with Lolium perenne: structuration and plant-mediated influences(2008)
;Jossi, MarylineDu fait de leur présence, leur activité et leur physiologie, les racines des plantes influencent physiquement, chimiquement et biologiquement leur sol environnant. Certains microorganismes du sol vont être favorisés, ou au contraire inhibés par les racines. La rhizosphère, à la jonction entre le sol et la plante, favorise de plus une activité intense en raison de la stimulation de la microflore par la rhizodéposition et de la variété des micro-habitats. Un lien étroit existe entre les microorganismes du sol et la plante, en particulier lorsque l’on considère les plantes pérennes qui, se maintenant d’année en année au même endroit, présentent des communautés particulièrement adaptées à leur environnement. Parmi ces plantes, la graminée nitrophile Lolium perenne a été choisie dans cette étude comme plante modèle pour son abondance et son importance dans le domaine agricole en tant que plante fourragère. Les activités des microorganismes sont extrêmement diversifiées et ont un impact important au niveau de la fertilité des sols (ex : cycles des éléments nutritifs, formation et décomposition de la matière organique) et de la santé des plantes. Ces organismes constituent de ce fait le principal champ d’investigation pour le développement de bio-fertilisants et de bio-pesticides. L’impact des microorganismes et en particulier des bactéries, sur la croissance et la résistance de la plante est couramment reconnu. Les connaissances concernant l’importance des différents groupes fonctionnels bactériens de la rhizosphère, leur écologie et leur structuration, doivent cependant être enrichies afin d’améliorer la compréhension des interactions entre plantes et microorganismes dans la rhizosphère, et d’augmenter le potentiel des bio-fertilisants. Les objectifs principaux des expériences menées dans cette étude consistent à élargir les connaissances du fonctionnement de la rhizosphère, et de la structuration des communautés bactériennes. Les communautés bactériennes totales, actives et cultivables de la rhizosphère sont caractérisées en relation avec différentes perturbations (variations au niveau du génotype de la plante, modifications dues au développement de la plante, changements liés au climat global). Ceci afin de cibler les modifications spécifiques aux différentes conditions et d’identifier les populations susceptibles de tenir une place importante dans le fonctionnement de la rhizosphère et la promotion de la croissance des plantes. Toutes les approches de communautés sont réalisées dans le même sol agricole afin de conserver la contribution du sol dans le fonctionnement rhizosphérique. Les approches génotypiques des communautés bactériennes totales et actives, au champ et en serre, montrent que les influences liées à la racine affectent peu la diversité globale, et que les communautés métaboliquement actives se révèlent être plus sensibles aux perturbations liées à la plante que les communautés totales. Ce qui indique que l’influence des racines se manifeste par la prolifération, ou au contraire la mise en dormance, de populations spécifiques au sein du réservoir bactérien représenté par les communautés du sol. L’établissement, in vitro, du profil fonctionnel des populations bactériennes associées à différents cultivars (diploïdes: Cavia, Lipresso ; tétraploïdes: Anaconda, Bastion) et stades de développement de L. perenne, permet de mettre en évidence les fonctions bactériennes dont la fréquence est affectée par ces deux facteurs liés à la plante. Le cultivar Anaconda semble héberger des communautés particulièrement spécifiques. De plus, quel que soit le cultivar, le passage de la floraison de la plante semble être un stade critique, à partir duquel l’influence de la plante s’estompe et les caractéristiques des communautés rhizosphériques tendent à rejoindre celles du sol nu. Cette approche fonctionnelle est également employée pour comparer, dans l’environnement racinaire et dans le sol nu, les fréquences de certaines capacités bactériennes connues comme étant impliquées dans les interactions entre plantes et bactéries, ainsi que pour mettre en évidence les corrélations entre ces différentes capacités. La caractérisation du sol rhizosphérique des différents cultivars, ainsi que l’analyse de leurs exudats racinaires (acides organiques, composés phénoliques), mettent en évidence des différences cohérentes avec les celles observées au niveau du profil fonctionnel de leurs communautés bactériennes rhizosphériques. Une approche génotypique (au champ) des communautés bactériennes associées à L. perenne, effectuée précédemment au LAMUN, a révélé l’importance du groupe des Pseudomonas. Dans l’étude présentée ici, l’approche génotypique (au champ) ainsi que l’approche fonctionnelle (in vitro) de ces communautés mettent toutes les deux en évidence le groupe des Actinobacteria. Connu pour être particulièrement résistant aux perturbations et adapté au statut nutritionnel limité du sol. Ce groupe s’avère tenir une place importante au sein des populations actives de la rhizosphère. Il est également le principal groupe de minéralisateurs potentiel de phytate dans des conditions limitantes en P inorganique et en présence de C soluble; deux conditions fréquemment rencontrées dans la rhizosphère. Les capacités des Actinobacteria semblent être essentielles pour le maintien à long terme des environnements changeants et devraient être étudiés dans la rhizosphère avec beaucoup plus d’attention., Due to their presence, activity and physiology, plant roots influence physically, chemically and biologically their surrounding soil. Some microorganisms will be favoured, or on the contrary inhibited by roots. As the junction between soil and plant, the rhizosphere presents an intense activity because of the stimulation of microflora by rhizodeposition and of the existence of various micro-habitats. A close link exists between soil microorganisms and plants, in particular when considering perennial plants which, growing at the same place from year to year, present particularly adapted associated microbial communities. Among these plants, the nitrophilic perennial grass Lolium perenne, was choosen in this study as model plant because of its abundance, and its agricultural importance as forage plant. Microorganisms’ activities are extremely diversified and strongly implicated in soil fertility (nutrient cycling, organic matter formation and decomposition) and plant health. These organisms are therefore the main investigation field for development of bio-fertilisers and biopesticides. The impact of microorganisms, in particular of bacteria, on plant growth and resistance is currently well recognised. Knowledge about the importance of the different functional groups of bacteria in the rhizosphere, their ecology, and their structuration, have nevertheless to be enriched to improve the understanding of plant-bacteria interactions in the rhizosphere, and to increase the potential of biofertilisers. Throughout the experiments conducted in this work, the main aims are to gain additionnal knowledge about rhizosphere functionning and structuration of bacterial communities. Total, active and culturable rhizosphere bacterial communities are characterised in relation with different perturbations (plant genotype variations, modifications due to plant development, and to global climate changes), in order to target the modifications, which are specific of the different conditions, and to identify bacterial groups likely to take an important place in rhizosphere functionning and plant growth promotion. All the community approaches were conducted in the same agricultural soil in order to conserve the soil contributions in the rhizosphere functionning. Genomic approaches of total and active bacterial communities, performed in field and in greenhouse conditions in the same agricultural soil, revealed that root-mediated perturbations affect only slightly the global divesity, and that the metabolically active part of the communities was more sensitive to plant-mediated influences than the total communities. Indicating that root influence lead to the proliferation or, on the contrary, to the dormance, of specific populations among the bacterial reservoir represented by soil bacterial communities. The establishment, in vitro, of the functional profiles of bacterial populations associated with different cultivars (diploïdes: Cavia, Lipresso ; tetraploïdes: Anaconda, Bastion) and development stages of L. perenne, allows to highlight the bacterial functions presenting frequencies which are affected by these two plant-related factors. Anaconda cultivar seems to harbour particularly specific bacterial communities. Furthermore, whatever the cultivar, plant flowering appears to be a critical stage beyond which plant influence is attenuated, and characteristics of rhizosphere communities tend to gather with those of bulk soil communities. This functional approach is also used to compare, in the root environment and in the bulk soil, the frequencies of some bacterial abilities known to be implicated in plant-bacteria interactions, and to highlight the existence of correlations between these different abilities. Furthermore, the characterisation of the rhizosphere soil of the different cultivars, and the analysis of their root exudates (organic acids, phenolics), allows to highlight differences coherent with those observed on the functional profiles of their bacterial communities. A genomic approach (field conditions) of bacterial communities associated to L. perenne, performed in previous experiments, revealed the importance of the Pseudomonas group. In the present study, the genomic approach (field conditions), as well as the functional approach (in vitro) of these communities, both highlighted the Actinobacteria group. Known to be particularly resitant to perturbations and to be adapted to the poor nutrient status of the soil, this group take an important place in the key active rhizosphere populations. It is also the main group of potential phytate mineralisers under limiting inorganic P conditions and in presence of soluble C sources; two frequent characteristics of the rhizosphere environment. The abilities of Actinobacteria are thought to be essential for long term maintaning of changing environments and have to be investigated in the rhizosphere whith more attention. - PublicationAccès librePlant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields(2006)
;Roesti, David ;Gaur, Rachna ;Johri, B. N. ;Imfeld, G. ;Sharma, S. ;Kawaljeet, K.The goal of this study was first to assess the dynamics of the bacterial community during a growing season in three Indian rain-fed wheat fields which differ mainly through their fertilizer management and yield and then to study the effects of PGPR/AMF bio-inoculations on the bacterial community structure and wheat growth. The bacterial community structure of the rhizosphere soil (RS) and the rhizoplane/endorhizosphere (RE) was determined by PCR-denaturing gradient gel electrophoresis. Seed treatments consisted of consortia of two PGPR strains alone or combined with AMF or AMF alone. The PGPR strains were Pseudomonas spp. which included some or all of the following plant growth promoting properties: phosphate solubilisation and production of indole-3-acetic acid, siderophores, 1-aminocyclopropane-1-carboxylate deaminase and diacetyl-phloroglucinol. The mycorrhizal inoculum was an indigenous AMF consortium isolated from the field with the lowest level of fertilization and yield. Variation partitioning analysis of the DGGE data indicated a predominant effect of the wheat growth stage (30.4% of the variance, P=0.001) over the type of field (9.0%, P=0.027) on the bacterial community structure in the RE. The impact of plant age in the RS was less than in the RE and the bacterial community structure of the field with the highest input of fertilization was very different from the low input fields. The bio-inoculants induced a significant modification in the bacterial community structure. In the RS, the bacterial consortia explained 28.3% (P=0.001) and the presence of AMF 10.6% (P=0.02) of the variance and the same trend was observed in the RE. Plant yield or grain quality was either increased or remained unaffected. For example, protein content was significantly higher in the treated plants' grain compared to the control plants; maximum values were obtained when the PGPR were co-inoculated with the AMF. The percentage of root colonization by AMF was significantly higher in the treatments containing a mycorrhizal inoculum than in the untreated control and remained unaffected by the PGPR treatments. In conclusion, the wheat rhizobacterial community structure is highly dynamic and influenced by different factors such as the plant's age, the fertilizer input and the type of bio-inoculant. In addition, there is a distance-related effect of the root on the bacterial community. Finally, a combined bio-inoculation of diacetyl-phloroglucinol producing PGPR strains and AMF can synergistically improve the nutritional quality of the grain without negatively affecting mycorrhizal growth. - PublicationAccès libreNitrogen fertiliser rate affects the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE)(2005)
;Fromin, Nathalie ;Tarnawski, Sonia Estelle ;Roussel-Delif, L. ;Hamelin, Jérôme ;Baggs, E.M.The effect of elevated pCO2 (60 Pa) on the frequency of nitrate-dissimilating Pseudomonas (NDP) was investigated in the rhizosphere of fertilised Lolium perenne swards in the Swiss Free Air Carbon dioxide Enrichment (FACE) experiment. Numbers of cultivable root-associated Pseudomonas were greater under elevated (60 Pa) than under ambient (36 Pa) pCO2 in both high and low N-fertilised swards. For both pCO2 conditions, the NDP frequency decreased with closer root proximity to L. perenne roots in low fertilised swards. Anyway, in high N swards the NDP frequency was similar in root and soil fractions. Thus, N availability may be a major factor influencing NDP populations under elevated pCO2, most likely due to increased competition for N between plant and nitrate-dissimilating bacteria. - PublicationAccès libreRéponse des populations de "Pseudomonas" à une augmentation de la concentration de CO2 atmosphérique dans la rhizosphère de "Lolium perenne" et "Molinia coerulea"(2004)
;Tarnawski, SoniaCette thèse a pour objectif d'évaluer la réponse des Pseudomonas à une augmentation de la concentration en CO2 atmosphérique (pCO2) dans la rhizosphère de deux graminées pérennes: Lolium perenne et Molinia coerulea. La première partie de ce travail s'intéresse au développement d'outils méthodologiques pour l'étude de la diversité des Pseudomonas dans le sol et la rhizosphère. Nous avons mis au point un protocole d'amplification d'une partie de l'ADNr 16S et de l'intergène 16S-23S de l'ADNr (séquences 16S-ITS1) spécifique au genre Pseudomonas. L'analyse PCR-RFLP des séquences d'ADNr 16S-ITS1 a ensuite été utilisée pour la caractérisation des populations de Pseudomonas associées à la rhizosphère de M. coerulea par approche culturale et amplification directe des séquences 16S-ITS1. Les Pseudomonas représentaient jusqu'à 10% de la microflore cultivable du sol et de la rhizosphère, et leur diversité était plus faible dans la fraction racinaire que dans le sol. Les Pseudomonas fluorescents dominaient dans la fraction racinaire alors que des organismes proche de P. alcaligenes étaient plus fréquemment retrouvés dans le sol. La seconde partie de cette étude est consacrée à l'influence d'une augmentation du pCO2 sur les populations de Pseudomonas associés à la rhizosphère des graminées pérennes. L'analyse de caractères en relation avec la plante (production d'auxine, sidérophores, de cyanure d'hydrogène, et réduction des nitrates) de 1228 isolats montrait que la structure phénotypique des populations de Pseudomonas était altérée sous fort pCO2 dans la rhizosphère, les deux plantes influençant différemment leur microflore. La fréquence des Pseudomonas réducteurs de nitrate était stimulée sous pCO2 élevée avec la proximité de la racine. La diversité génotypique des Pseudomonas dissimilant les nitrates, basée sur l'analyse des séquences ITS1, et des gènes de nitrate réductase narG et napA n'était pas significativement modifiée sous pCO2 élevée ou à proximité de la racine. Les Pseudomonas réducteurs de nitrates semblaient contre-sélectionnés dans la rhizosphère de L. perenne, et limités dans leur réponse au pCO2 élevée par la disponibilité en azote. L'étude des formes de nitrate réductases présentes dans les souches correspondantes, a révélé une modification de la diversité fonctionnelle parmi les souches de Pseudomonas associés à la rhizosphère sous pCO2 élevée. Ce changement dans les populations de Pseudomonas est discuté en relation avec les possibles modifications des conditions physico-biochimiques de la rhizosphère sous fort pCO2., The objective of this thesis was to assess the response of Pseudomonas to an increase atmospheric CO2 concentration (pCO2) in the rhizosphere of the two perennial grasses: Lolium perenne and Molinia coerulea. The first part of this work was interested in the development of methodological tools for studying Pseudomonas diversity in the soil and in the rhizosphere. We proposed a protocol for the specific Pseudomonas amplification of the partial 16S rDNA and 16S-23S rDNA spacer (16S-ITS1 sequences). PCR-RFLP analysis of 16S-ITS1 rDNA sequences was used for the characterization of Pseudomonas associated with the rhizosphere of M. coerulea by culture approach and direct amplification of the 16S-ITS1 sequences. Pseudomonas accounted for up to 10% of the cultivable microflora in soil and rhizosphere, and its diversity was lower in the root fraction. Fluorescent Pseudomonas dominated in the rhizosphere whereas organisms close to P. alcaligenes were more frequently found in the soil. The second part this study was devoted to the influence of an increase in pCO2 on Pseudomonas populations associated with the rhizosphere of the perennial grasses. Analysis of characters in relation with the plant (auxin, siderophores, hydrogen cyanide production and nitrate reduction) among 1228 isolates showed that the phenotypic structure of Pseudomonas populations was altered under elevated pCO2 in the rhizosphere, the two plants influencing their microflora differently. Nitrate reducers Pseudomonas were stimulated under elevated pCO2 at the root proximity. The genotypic diversity of nitrate dissimilating Pseudomonas, based on 16S-ITS1 rDNA sequences and narG and napA nitrate reductase genes analysis, was not significantly modified by plant or by elevated pCO2. Nitrate reducing Pseudomonas seemed to be counter-selected in the rhizosphere of L. perenne, and limited in their response to elevated pCO2 by nitrogen availability. The study of nitrate reductase forms present in the corresponding strains revealed a modification of functional diversity among rhizospheric Pseudomonas under elevated pCO2. This change among Pseudomonas populations is discussed in relation with possible modifications of the rhizosphere physico-biochemical conditions under elevated pCO2. - PublicationAccès libreExamination of Gould’s modified S1 (mS1) selective medium and Angle’s non-selective medium for describing the diversity of Pseudomonas spp. in soil and root environments(2003)
;Tarnawski, Sonia Estelle ;Hamelin, Jérôme ;Locatelli, Laurent; Fromin, NathalieStudies on the diversity of environmental culturable Pseudomonas populations are dependent on the isolation procedure. This procedure includes the use of selective media which may influence the recovery of strains and thus the diversity described. In this study, we assessed the use of two agar isolation media for describing the diversity of soil- and root-inhabiting Pseudomonas associated with the perennial grass Molinia coerulea. A total of 382 Pseudomonas strains were recovered on either non-selective Angle’s medium, or on Gould’s modified S1 (mS1) Pseudomonas-selective medium. Their diversity was assessed by restriction analysis of PCR (polymerase chain reaction)-amplified 16S–23S rDNA internal transcript spacer sequences. The comparison of mS1- and Angle-recovered populations showed that the use of mS1 selective medium led to an underestimation of both Pseudomonas counts and diversity, especially in the soil environment.