Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Simulation of braided river elevation model time series with multiple-point statistics
    A new method is proposed to generate successive topographies in a braided river system. Indeed, braided river morphology models are a key factor influencing river-aquifer interactions and have repercussions in ecosystems, flood risk or water management. It is essentially based on multivariate multiple-point statistics simulations and digital elevation models as training data sets. On the one hand, airborne photography and LIDAR acquired at successive time steps have contributed to a better understanding of the geomorphological processes although the available data are sparse over time and river scales. On the other hand, geostatistics provide simulation tools for multiple and continuous variables, which allow the exploration of the uncertainty of many assumption scenarios. Illustration of the approach demonstrates the ability of multiple-point statistics to produce realistic topographies from the information provided by digital elevation models at two time steps.
  • Publication
    Accès libre
    Simulation of braided river elevation model time series with multiple-point statistics
    A new method is proposed to generate successive topographies in a braided river system. Indeed, braided river morphologymodels are a key factor influencing river–aquifer interactions and have repercussions in ecosystems, flood risk or water management. It is essentially based on multivariate multiple-point statistics simulations and digital elevation models as training data sets. On the one hand, airborne photography and LIDAR acquired at successive time steps have contributed to a better understanding of the geomorphological processes although the available data are sparse over time and river scales. On the other hand, geostatistics provide simulation tools for multiple and continuous variables, which allow the exploration of the uncertainty of many assumption scenarios. Illustration of the approach demonstrates the ability of multiple-point statistics to produce realistic topographies from the information provided by digital elevation models at two time steps.