Voici les éléments 1 - 5 sur 5
  • Publication
    Accès libre
    Effects of endogeic earthworms on the soil organic matter dynamics and the soil structure in urban and alluvial soil materials
    Earthworms are considered as key actors of soil processes at different spatial and temporal scales and provide essential ecosystem services linked to climate regulation or primary production. However, little is known about their basic functional roles (e.g. organic matter decomposition, soil structuring processes) in perturbed systems such as urban or alluvial soils. Alluvial soils are characterized by regular physical perturbation through flooding and associated erosion/sedimentation processes which are rather similar to perturbations (e.g. temporal instability, spatial heterogeneity) affecting urban soils. Due to their close soil characteristics, we hypothesized that in both cases, soil functioning is similarwith respect to soil fauna activity. Under controlled conditions, our objective was to investigate the effects of two endogeic earthworm species, Allolobophora chlorotica (pink morph) and Aporrectodea rosea (the two most abundant species found in the studied urban site), on soil organic matter (SOM) dynamics and soil structure (network of earthworm burrows) comparing an urban and an alluvial soil. We investigated the growth of individuals (weight gain and reproduction success) and assessed their effects on SOMdecomposition (cumulative C–CO2 emission, nitrogen and phosphorus mineralization) and soil structure (macroporosity, total length and connectivity of segments) after one and three months of incubation. Our results showed higher growth of A. rosea in the alluvial soil compared to the urban soil. However, the total length of burrows, carbon and nitrogen mineralization were often higher in the urban soil especially when the two species were combined. This trend can be mainly explained by lower organic matter content found in the urban soil whichmay influence positively the burrowing activity and negatively the growth of earthworms. Endogeic earthworms appear a key feature of the soil functioning in the urban context through their roles on organic matter transformation, the formation and maintenance of the soil structure.
  • Publication
    Accès libre
    Influence of some physicochemical and biological parameters on soil structure formation in alluvial soils
    (2007)
    Bullinger-Weber, G.
    ;
    ; ;
    Guenat, Claire
    This study examines the role of abiotic (texture, calcium carbonates or iron) and biotic parameters (earthworm and enchytraeid activities) on the initial phases of soil aggregation. Our research focused on humus forms in alluvial soils, which are considered as young and heterogeneous environments. We hypothesized that the soil structure formation is determined by both the nature of the recent alluvial deposits and the soil fauna. For this purpose, six sites were chosen throughout two types of softwood forests (willow and alder forest) representing two stages of vegetation succession. Evidence of soil texture influence on aggregate stability was observed. A dominance of a coarse sand fraction caused a quick colonization of enchytraeids and epigeic earthworms while a silty texture favoured the presence of anecic earthworms, thus increasing the aggregate stabilisation. Iron forms, acting as cementing agents, were observed in the coarse silt, while calcium carbonates were equally distributed among the textural fractions. Active calcium carbonate fraction, binding organic matter with mineral components, was not found in the coarse sand fraction. In conclusion, the tree age cannot alone be used as an indicator of the humus form evolution but biological and physicochemical parameters also influence the initial steps of soil structuration.
  • Publication
    Accès libre
    Identification of facies models in alluvial soil formation: The case of a Swiss alpine floodplain
    This paper describes different conceptual facies models intervening in alluvial soil formation in the case of the Sarine River floodplain, a partially embanked floodplain situated in the northwest of the Swiss Alps. Alluvial soils are submitted to processes of deposition and erosion and exhibit various characteristics reflecting the composition and properties of the material transported. Moreover, these processes of sedimentation and erosion vary in space and time and contribute thus to the heterogeneity of the whole floodplain system. Detailed analyses of the different soil layers permit a precise description of the variability and complexity of soil formation. In addition, the vertical succession of the horizons is useful to reconstruct the different natural or artificial events that occurred in this alluvial valley since the nineteenth century. On a larger scale, this study aims to contribute to floodplain management by identifying zones for restoration. The investigation was undertaken using data from 109 auger borings carried out in the Sarine River valley. Several morphological attributes of the different horizons and of the different profiles were first reduced in number and then grouped by a hierarchical agglomerative clustering. Profile factors were analysed by means of correlation analyses as well as other data summaries. The results showed positive correlations between several factors, particularly between the total profile thickness and the number of horizons found in the profile. Four facies models of alluvial soil formation are then proposed to illustrate and explain the variability of alluvial soil formation in the Sarine floodplain. Finally, these facies models are placed into the context of the Sarine floodplain scale case, according to the levels of organization of the alluvial system.
  • Publication
    Accès libre
    Effects of endogeic earthworms on the soil organic matter dynamics and the soil structure in urban and alluvial soil materials
    ;
    Turberg, Pascal
    ;
    Kohler-Milleret, Roxane
    ;
    ;
    Earthworms are considered as key actors of soil processes at different spatial and temporal scales and provide essential ecosystem services linked to climate regulation or primary production. However, little is known about their basic functional roles (e.g. organic matter decomposition, soil structuring processes) in perturbed systems such as urban or alluvial soils. Alluvial soils are characterized by regular physical perturbation through flooding and associated erosion/sedimentation processes which are rather similar to perturbations (e.g. temporal instability, spatial heterogeneity) affecting urban soils. Due to their close soil characteristics, we hypothesized that in both cases, soil functioning is similar with respect to soil fauna activity. Under controlled conditions, our objective was to investigate the effects of two endogeic earthworm species, Allolobophora chlorotica (pink morph) and Aporrectodea rosea (the two most abundant species found in the studied urban site), on soil organic matter (SOM) dynamics and soil structure (network of earthworm burrows) comparing an urban and an alluvial soil. We investigated the growth of individuals (weight gain and reproduction success) and assessed their effects on SOM decomposition (cumulative C–CO2 emission, nitrogen and phosphorus mineralization) and soil structure (macroporosity, total length and connectivity of segments) after one and three months of incubation. Our results showed higher growth of A. rosea in the alluvial soil compared to the urban soil. However, the total length of burrows, carbon and nitrogen mineralization were often higher in the urban soil especially when the two species were combined. This trend can be mainly explained by lower organic matter content found in the urban soil which may influence positively the burrowing activity and negatively the growth of earthworms. Endogeic earthworms appear a key feature of the soil functioning in the urban context through their roles on organic matter transformation, the formation and maintenance of the soil structure.