Voici les éléments 1 - 3 sur 3
  • Publication
    Accès libre
    Impact of roots, mycorrhizas and earthworms on soil physical properties as assessed by shrinkage analysis
    (2009)
    Milleret, Roxane
    ;
    ;
    Lamy, F.
    ;
    ;
    Boivin, P.
    Soil biota such as earthworms, arbuscular mycorrhizal fungi (AMF) and plant roots are known to play a major role in engineering the belowground part of the terrestrial ecosystems, thus strongly influencing the water budget and quality on earth. However, the effect of soil organisms and their interactions on the numerous soil physical properties to be considered are still poorly understood. Shrinkage analysis allows quantifying a large spectrum of soil properties in a single experiment, with small standard errors. The objectives of the present study were, therefore, to assess the ability of the method to quantify changes in soil properties as induced by single or combined effects of leek roots (Allium porrum), AMF (Glomus intraradices) and earthworms (Allolobophora chlorotica). The study was performed on homogenised soil microcosms and the experiments lasted 35 weeks. The volume of the root network and the external fungal hyphae was measured at the end, and undisturbed soil cores were collected. Shrinkage analysis allowed calculating the changes in soil hydro-structural stability, soil plasma and structural pore volumes, soil bulk density and plant available water, and structural pore size distributions. Data analysis revealed different impacts of the experimented soil biota on the soil physical properties. At any water content, the presence of A. chlorotica resulted in a decrease of the specific bulk volume and the hydro-structural stability around 25%, and in a significant increase in the bulk soil density. These changes went with a decrease of the structural pore volumes at any pore size, a disappearing of the thinnest structural pores, a decrease in plant available water, and a hardening of the plasma. On the contrary, leek roots decreased the bulk soil density up to 1.23 g cm−3 despite an initial bulk density of 1.15 g cm−3. This increase in volume was accompanied with a enhanced hydro-structural stability, a larger structural pore volume at any pore size, smaller structural pore radii and an increase in plant available water. Interestingly, a synergistic effect of leek roots and AMF in the absence of the earthworms was highlighted, and this synergistic effect was not observed in presence of earthworms. The structural pore volume generated by root and AMF growth was several orders of magnitude larger than the volume of the organisms. Root exudates as well as other AMF secretion have served as carbon source for bacteria that in turn would enhance soil aggregation and porosity, thus supporting the idea of a self-organization of the soil–plant–microbe complex previously described.
  • Publication
    Accès libre
    White lupin leads to increased maize yield through a soil fertility-independent mechanism: a new candidate for fighting Striga hermonthica infestation?
    (2009)
    Weisskopf, Laure
    ;
    Akello, Pollycarp
    ;
    Milleret, Roxane
    ;
    Khan, Zeyaur R.
    ;
    Schulthess, Fritz
    ;
    ;
    Nitrogen (N)-deficiency and lack of phosphorus (P) availability are major constraints to maize yields in Western Kenya. In a two-season field study in the lake Victoria basin, we tested the capacity of white lupin (Lupinus albus (L.), cv. Ultra), as a nitrogen-fixing crop with a highly efficient P-acquisition capacity, to increase maize yields when used as a companion or cover crop, or as a source of organic matter. Each experiment was performed on three different fields (Vertisols) differing in N/P availability, previous cropping history and in levels of infestation by the parasitic weed Striga hermonthica (Del.) Benth. Our results show that white lupin led to significantly higher yields of maize when used as a cover crop. When lupin was grown as a companion crop, it also slightly enhanced the yield of the co-cultivated maize. When lupin shoots were incorporated to the soil, the positive effect of lupin on maize growth was field-dependent and only occurred in the field most heavily infested with S. hermonthica. Despite the beneficial impact on maize yield, no clear effect of lupin on soil N and P availability or on maize N/P uptake were observed. In contrast, lupin significantly inhibited infestation of maize by S. hermonthica: when lupin was grown together with maize in pots inoculated with S. hermonthica, the emergence of the weed was strongly reduced compared to the pots with maize only. This work opens a new range of questions for further research on white lupin and its potential beneficial impact as a S. hermonthica-inhibiting crop.
  • Publication
    Accès libre
    Root, mycorrhiza and earthworm interactions: their effects on soil structuring processes, plant and soil nutrient concentration and plant biomass
    Earthworms, arbuscular mycorrhiza fungi (AMF) and roots are important components of the belowground part of terrestrial ecosystem. However, their interacting effects on soil properties and plant growth are still poorly understood. A compartmental experimental design was used in a climate chamber in order to investigate, without phosphorus (P) addition, the single and combined effects of earthworms (Allolobophora chlorotica), AMF (Glomus intraradices) and roots (Allium porrum) on soil structure, nutrient concentration and plant growth. In our experimental conditions, plant roots improved soil structure stability (at the level of macroaggregates) whereas earthworms decreased it. AMF had no effect on soil structure stability but increased P transfer from the soil to the plant and significantly increased plant biomass. Earthworms had no direct influence on P uptake or plant biomass, and the N/P ratio measured in the shoots indicated that P was limiting. Interactions between AMF and earthworms were also observed on total C and N content in the soil and on total root biomass. Their effects varied temporally and between the different soil compartments (bulk soil, rhizosphere and drilosphere). After comparison with other similar studies, we suggest that effects of earthworms and AMF on plant production may depend on the limiting factors in the soil, mainly N or P. Our experiment highlights the importance of measuring physical and chemical soil parameters when studying soil organism interactions and their influence on plant performance.Earthworms, arbuscular mycorrhiza fungi (AMF) and roots are important components of the belowground part of terrestrial ecosystem. However, their interacting effects on soil properties and plant growth are still poorly understood. A compartmental experimental design was used in a climate chamber in order to investigate, without phosphorus (P) addition, the single and combined effects of earthworms (Allolobophora chlorotica), AMF (Glomus intraradices) and roots (Allium porrum) on soil structure, nutrient concentration and plant growth. In our experimental conditions, plant roots improved soil structure stability (at the level of macroaggregates) whereas earthworms decreased it. AMF had no effect on soil structure stability but increased P transfer from the soil to the plant and significantly increased plant biomass. Earthworms had no direct influence on P uptake or plant biomass, and the N/P ratio measured in the shoots indicated that P was limiting. Interactions between AMF and earthworms were also observed on total C and N content in the soil and on total root biomass. Their effects varied temporally and between the different soil compartments (bulk soil, rhizosphere and drilosphere). After comparison with other similar studies, we suggest that effects of earthworms and AMF on plant production may depend on the limiting factors in the soil, mainly N or P. Our experiment highlights the importance of measuring physical and chemical soil parameters when studying soil organism interactions and their influence on plant performance.