Voici les éléments 1 - 8 sur 8
  • Publication
    Accès libre
    Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola
    (2007) ;
    Ton, Jurriaan
    ;
    van Doorn, Ronald
    ;
    Jakab, Gabor
    ;
    García-Agustín, Pilar
    ;
    We have examined the role of the callose synthase PMR4 in basal resistance and β-aminobutyric acid-induced resistance (BABA-IR) of Arabidopsis thaliana against the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic pathogen Alternaria brassicicola. Compared to wild-type plants, the pmr4-1 mutant displayed enhanced basal resistance against P. syringae, which correlated with constitutive expression of the PR-1 gene. Treating the pmr4-1 mutant with BABA boosted the already elevated levels of PR-1 gene expression, and further increased the level of resistance. Hence, BABA-IR against P. syringae does not require PMR4-derived callose. Conversely, pmr4-1 plants showed enhanced susceptibility to A. brassicicola, and failed to show BABA-IR. Wild-type plants showing BABA-IR against A. brassicicola produced increased levels of JA. The pmr4-1 mutant produced less JA upon A. brassicicola infection than the wild-type. Blocking SA accumulation in pmr4-1 restored basal resistance, but not BABA-IR against A. brassicicola. This suggests that the mutant's enhanced susceptibility to A. brassicicola is caused by SA-mediated suppression of JA, whereas the lack of BABA-IR is caused by its inability to produce callose. A. brassicicola infection suppressed ABA accumulation. Pre-treatment with BABA antagonized this ABA accumulation, and concurrently potentiated expression of the ABA-responsive ABI1 gene. Hence, BABA prevents pathogen-induced suppression of ABA accumulation, and sensitizes the tissue to ABA, causing augmented deposition of PMR4-derived callose.
  • Publication
    Métadonnées seulement
  • Publication
    Métadonnées seulement
  • Publication
    Accès libre
    Enhancing Arabidopsis Salt and Drought Stress Tolerance by Chemical Priming for Its Abscisic Acid Responses
    (2005)
    Jakab, Gabor
    ;
    Ton, Jurriaan
    ;
    ;
    Zimmerli, Laurent
    ;
    Métraux, Jean-Pierre
    ;
    Drought and salt stress tolerance of Arabidopsis (Arabidopsis thaliana) plants increased following treatment with the nonprotein amino acid -aminobutyric acid (BABA), known as an inducer of resistance against infection of plants by numerous pathogens. BABA-pretreated plants showed earlier and higher expression of the salicylic acid-dependent PR-1 and PR-5 and the abscisic acid (ABA)-dependent RAB-18 and RD-29A genes following salt and drought stress. However, non-expressor of pathogenesis-related genes 1 and constitutive expressor of pathogenesis-related genes 1 mutants as well as transgenic NahG plants, all affected in the salicylic acid signal transduction pathway, still showed increased salt and drought tolerance after BABA treatment. On the contrary, the ABA deficient 1 and ABA insensitive 4 mutants, both impaired in the ABA-signaling pathway, could not be protected by BABA application. Our data demonstrate that BABA-induced water stress tolerance is based on enhanced ABA accumulation resulting in accelerated stress gene expression and stomatal closure. Here, we show a possibility to increase plant tolerance for these abiotic stresses through effective priming of the preexisting defense pathways without resorting to genetic alterations.
  • Publication
    Métadonnées seulement
    Dissecting the b-Aminobutyric Acid-Induced Priming Phenomenon in Arabidopsis
    (2005)
    Ton, Jurnaan
    ;
    Jakab, Gabor
    ;
    Toquin, Valerie
    ;
    ;
    Lavicoli, Annalisa
    ;
    Maeder, Muriel
    ;
  • Publication
    Métadonnées seulement
  • Publication
    Accès libre
    Dissecting the ß-Aminobutyric Acid–Induced Priming Phenomenon in Arabidopsis
    (2005)
    Ton, Jurriaan
    ;
    Jakab, Gabor
    ;
    Toquin, Valérie
    ;
    ;
    Iavicoli, Annalisa
    ;
    Maeder, Muriel N.
    ;
    Métraux, Jean-Pierre
    ;
    Plants treated with the nonprotein amino acid ß-aminobutyric acid (BABA) develop an enhanced capacity to resist biotic and abiotic stresses. This BABA-induced resistance (BABA-IR) is associated with an augmented capacity to express basal defense responses, a phenomenon known as priming. Based on the observation that high amounts of BABA induce sterility in Arabidopsis thaliana, a mutagenesis screen was performed to select mutants impaired in BABA-induced sterility (ibs). Here, we report the isolation and subsequent characterization of three T-DNA–tagged ibs mutants. Mutant ibs1 is affected in a cyclin-dependent kinase–like protein, and ibs2 is defective in AtSAC1b encoding a polyphosphoinositide phosphatase. Mutant ibs3 is affected in the regulation of the ABA1 gene encoding the abscisic acid (ABA) biosynthetic enzyme zeaxanthin epoxidase. To elucidate the function of the three IBS genes in plant resistance, the mutants were tested for BABA-IR against the bacterium Pseudomonas syringae pv tomato, the oomycete Hyaloperonospora parasitica, and BABA-induced tolerance to salt. All three ibs mutants were compromised in BABA-IR against H. parasitica, although to a different extent. Whereas ibs1 was reduced in priming for salicylate (SA)-dependent trailing necrosis, mutants ibs2 and ibs3 were affected in the priming for callose deposition. Only ibs1 failed to express BABA-IR against P. syringae, which coincided with a defect in priming for SA-inducible PR-1 gene expression. By contrast, ibs2 and ibs3 showed reduced BABA-induced tolerance to salt, which correlated with an affected priming for ABA-inducible gene expression. For all three ibs alleles, the defects in BABA-induced sterility and BABA-induced protection against P. syringae, H. parasitica, and salt could be confirmed in independent mutants. The data presented here introduce three novel regulatory genes involved in priming for different defense responses.