Voici les éléments 1 - 4 sur 4
Pas de vignette d'image disponible
Publication
Métadonnées seulement

Sampling Designs From Finite Populations With Spreading Control Parameters

2018-1-10, Tillé, Yves, Qualité, Lionel, Wilhelm, Matthieu

We present a new family of sampling designs in finite population based on the use of chain processes and of multivariate discrete distributions. In Bernoulli sampling, the number of non-selected units between two selected units has a geometric distribution, while, in simple random sampling, it has a negative hypergeometric distribution. We propose to replace these distributions by more general ones, which enables us to include a tuning parameter for the joint inclusion probabilities that have a relatively simple form. An effect of repulsion or attraction can then be added in the selection of the units in such a way that a large set of new designs are defined that include Bernoulli sampling, simple random sampling and systematic sampling. A set of simulations show the interest of the method.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Quasi systematic sampling

2015-6-25, Wilhelm, Matthieu, Tillé, Yves

We present a family of sampling designs depending on a integer parameter r. Then, simple random sampling is a particular case of this sampling design, namely when r = 1 and the systematic sampling design is the limiting case when r tends to the infinity. For every r > 0, this sampling design has the important property to have first and second order densities which are tractable and positive. Thus, the Horvitz-Thompson estimator is unbiased and the estimator of the variance of the Horvitz-Thompson estimator is also unbiased. This family of sampling design can be used in finite population or on any finite interval of R.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Probability sampling designs: Balancing and principles for choice of design

2017-12-20, Tillé, Yves, Wilhelm, Matthieu

In this paper, we first aim to formalize the choice of the sampling design for a particular estimation problem. Next several principles are proposed: randomization, over-representation and restriction. These principles are fundamental to assist in the determination of the most appropriate design. A priori knowledge of the population can be also formalized by modelling the population, which can be helpful when choosing the sampling design. We present a list of sampling designs by specifying their corresponding models and the principles used to derive them. Emphasis is placed on new spatial sampling methods and their related models. A simulation shows the advantages of the different methods.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Quasi-Systematic Sampling From a Continuous Population

2017, Wilhelm, Matthieu, Qualité, Lionel, Tillé, Yves

A specific family of point processes are introduced that allow to select samples for the purpose of estimating the mean or the integral of a function of a real variable. These processes, called quasi-systematic processes, depend on a tuning parameter $r>0$ that permits to control the likeliness of jointly selecting neighbor units in a same sample. When $r$ is large, units that are close tend to not be selected together and samples are well spread. When $r$ tends to infinity, the sampling design is close to systematic sampling. For all $r > 0$, the first and second-order unit inclusion densities are positive, allowing for unbiased estimators of variance. Algorithms to generate these sampling processes for any positive real value of $r$ are presented. When $r$ is large, the estimator of variance is unstable. It follows that $r$ must be chosen by the practitioner as a trade-off between an accurate estimation of the target parameter and an accurate estimation of the variance of the parameter estimator. The method's advantages are illustrated with a set of simulations.