Voici les éléments 1 - 3 sur 3
Pas de vignette d'image disponible
Publication
Métadonnées seulement

Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field

2013, Robert, Christelle Aurélie Maud, Erb, Matthias, Hiltpold, Ivan, Hibbard, Bruce Elliott, Gaillard, Mickaël David Philippe, Bilat, Julia, Degenhardt, Jörg, Cambet-Petit-Jean, Xavier, Turlings, Ted, Zwahlen, Claudia

Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of transforming a maize line with a terpene synthase gene in field and laboratory assays, both above- and below ground. The transformation, which resulted in the constitutive emission of (E)--caryophyllene and -humulene, was found to compromise seed germination, plant growth and yield. These physiological costs provide a possible explanation for the inducibility of an (E)--caryophyllene-synthase gene in wild and cultivated maize. The overexpression of the terpene synthase gene did not impair plant resistance nor volatile emission. However, constitutive terpenoid emission increased plant apparency to herbivores, including adults and larvae of the above ground pest Spodoptera frugiperda, resulting in an increase in leaf damage. Although terpenoid overproducing lines were also attractive to the specialist root herbivore Diabrotica virgifera virgifera below ground, they did not suffer more root damage in the field, possibly because of the enhanced attraction of entomopathogenic nematodes. Furthermore, fewer adults of the root herbivore Diabrotica undecimpunctata howardii were found to emerge near plants that emitted (E)--caryophyllene and -humulene. Yet, overall, under the given field conditions, the costs of constitutive volatile production overshadowed its benefits. This study highlights the need for a thorough assessment of the physiological and ecological consequences of genetically engineering plant signals in the field to determine the potential of this approach for sustainable pest management strategies.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Herbivore-induced plant volatiles mediate host selection by a root herbivore

2012, Robert, Christelle Aurélie Maud, Erb, Matthias, Duployer, M., Zwahlen, Claudia, Doyen, G. R., Turlings, Ted

In response to herbivore attack, plants mobilize chemical defenses and release distinct bouquets of volatiles. Aboveground herbivores are known to use changes in leaf volatile patterns to make foraging decisions, but it remains unclear whether belowground herbivores also use volatiles to select suitable host plants. We therefore investigated how above- and belowground infestation affects the performance of the root feeder Diabrotica virgifera virgifera, and whether the larvae of this specialized beetle are able to use volatile cues to assess from a distance whether a potential host plant is already under herbivore attack. Diabrotica virgifera larvae showed stronger growth on roots previously attacked by conspecific larvae, but performed more poorly on roots of plants whose leaves had been attacked by larvae of the moth Spodoptera littoralis. Fittingly, D similar to virgifera larvae were attracted to plants that were infested with conspecifics, whereas they avoided plants that were attacked by S similar to littoralis. We identified (E)-beta-caryophyllene, which is induced by D similar to virgifera, and ethylene, which is suppressed by S similar to littoralis, as two signals used by D similar to virgifera larvae to locate plants that are most suitable for their development. Our study demonstrates that soil-dwelling insects can use herbivore-induced changes in root volatile emissions to identify suitable host plants.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in a density-dependent manner

2012, Robert, Christelle Aurélie Maud, Erb, Matthias, Hibbard, Bruce Elliott, French, B. W., Zwahlen, Claudia, Turlings, Ted

1. Leaf-herbivore attack often triggers induced resistance in plants. However, certain specialist herbivores can also take advantage of the induced metabolic changes. In some cases, they even manipulate plant resistance, leading to a phenomenon called induced susceptibility. Compared to above-ground plant-insect interactions, little is known about the prevalence and consequences of induced responses below-ground. 2. A recent study suggested that feeding by the specialist root herbivore Diabrotica virgifera virgifera makes maize roots more susceptible to conspecifics. To better understand this phenomenon, we conducted a series of experiments to study the behavioural responses and elucidate the underlying biochemical mechanisms. 3. We found that D. virgifera benefitted from feeding on a root system in groups of intermediate size (39 larvae/plant in the laboratory), whereas its performance was reduced in large groups (12 larvae/plant). Interestingly, the herbivore was able to select host plants with a suitable density of conspecifics by using the induced plant volatile (E)-beta-caryophyllene in a dose-dependent manner. Using a split root experiment, we show that the plant-induced susceptibility is systemic and, therefore, plant mediated. Chemical analyses on plant resource reallocation and defences upon herbivory showed that the systemic induced-susceptibility is likely to stem from a combination of (i) increased free amino acid concentrations and (ii) relaxation of defence inducibility. 4. These findings show that herbivores can use induced plant volatiles in a density-dependent manner to aggregate on a host plant and change its metabolism to their own benefit. Our study furthermore helps to explain the remarkable ecological success of D. virgifera in maize fields around the world.