Options
Süss-Fink, Georg
Nom
Süss-Fink, Georg
Affiliation principale
Fonction
Professeur ordinaire
Email
georg.suess-fink@unine.ch
Identifiants
Résultat de la recherche
4 Résultats
Voici les éléments 1 - 4 sur 4
- PublicationMétadonnées seulementRegioselective alkane oxygenation with H2O2 catalyzed by titanosilicalite TS-1(2006)
;Shul'pin, Georgiy B ;Sooknoi, Tawan ;Romakh, Vladimir B; Shul'pina, Lidia STitanosilicalite TS-1 catalyses oxidation of light (methane, ethane, propane and n-butane) and normal higher (hexane, heptane, octane and nonane) alkanes to give the corresponding isomeric alcohols and ketones. The oxidation of higher alkanes proceeds in many cases with a unique regioselectivity. Thus, in the reaction with n-heptane the CH2 groups in position 3 exhibited a reactivity 2.5 times higher than those of the other methylene groups. This selectivity can be enhanced if hexan-3-ol is added to the reaction mixture, the 3-CH2/2-CH2 ratio becoming 10. It is assumed that the unusual selectivity in the oxidation of n-heptane (and other higher alkanes) is due to steric hindrance in the catalyst cavity. As a result, the catalytically active species situated on the catalyst walls can only easily react with certain methylenes of the alkane, which is adsorbed in the cavity taking U-shape (hairpin) conformations. (c) 2006 Elsevier Ltd. All rights reserved. - PublicationMétadonnées seulementAlkane oxygenation with H2O2 catalysed by FeCl3 and 2,2 '-bipyridine(2005)
;Shul'pin, Georgiy B ;Golfeto, Camilla C; ;Shul'pina, Lidia SMandelli, DalmaThe H2O2-FeCl3-bipy system in acetonitrile efficiently oxidises alkanes predominantly to alkyl hydroperoxides. Turnover numbers attain 400 after 1 h at 60 degrees C. It has been assumed that bipy facilitates proton abstraction from a H2O2 molecule coordinated to the iron ion (these reactions are stages in the catalytic cycle generating hydroxyl radicals from the hydrogen peroxide). Hydroxyl radicals then attack alkane molecules finally yielding the alkyl hydroperoxide. (c) 2005 Elsevier Ltd. All rights reserved. - PublicationMétadonnées seulementThe kinetics and mechanism of cyclohexane oxygenation by hydrogen peroxide catalyzed by a binuclear iron complex(2003)
;Kozlov, Yuriy N ;Gonzalez-Cuervo, Laura; Shul'pin, Georgiy BThe binuclear iron complex containing 1,3,7-triazacyclononane and acetate bridges as ligands was found to catalyze effective oxidation of alkanes by hydrogen peroxide in acetonitrile at room temperature in the presence of pyrazine-2-carboxylic acid (P) as a cocatalyst. The primary reaction products were alkylhydroperoxides, which gradually decomposed to produce the corresponding ketones (aldehydes) and alcohols. Alkane activation was caused by the attack of hydroxyl radicals on a C-H alkane bond, which resulted in the formation of alkyl radicals. Hydroxyl radicals were generated in the rate-determining step of monomolecular decomposition of the iron diperoxo adduct with one P molecule. A kinetic model of the process that satisfactorily described the whole set of experimental data was suggested. The constants of supposed equilibria and the rate constant for the decomposition of the diperoxo complex of iron with P were estimated. - PublicationMétadonnées seulementOxidative functionalisation of ethane with hydrogen peroxide catalysed by chromic acid(2000)
;Shul'pin, Georgiy B; Shul'pina, Lidia SChromic acid catalyses efficiently (turnover numbers attain 620) the oxidation of alkanes including the very inert ethane by H2O2 or tert-BuOOH in acetonitrile solution at 60 degreesC; alkyl hydroperoxides, ketones (aldehydes) and alcohols are the main products.