Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. The kinetics and mechanism of cyclohexane oxygenation by hydrogen peroxide catalyzed by a binuclear iron complex
 
  • Details
Options
Vignette d'image

The kinetics and mechanism of cyclohexane oxygenation by hydrogen peroxide catalyzed by a binuclear iron complex

Auteur(s)
Kozlov, Yuriy N
Gonzalez-Cuervo, Laura
Süss-Fink, Georg 
Institut de chimie 
Shul'pin, Georgiy B
Date de parution
2003
In
Russian Journal of Physical Chemistry
Vol.
4
No
77
De la page
575
A la page
579
Mots-clés
  • SOLUBLE METHANE MONOOXYGENASE
  • TRANSITION-METAL COMPLEXES
  • ALKYL
  • PEROXIDES
  • HYDROXYLATION
  • OXIDATION
  • ALKANES
  • ACTIVATION
  • HYDROPEROXIDATION
  • PROTEINS
  • DIOXYGEN
  • SOLUBLE METHANE MONOO...

  • TRANSITION-METAL COMP...

  • ALKYL

  • PEROXIDES

  • HYDROXYLATION

  • OXIDATION

  • ALKANES

  • ACTIVATION

  • HYDROPEROXIDATION

  • PROTEINS

  • DIOXYGEN

Résumé
The binuclear iron complex containing 1,3,7-triazacyclononane and acetate bridges as ligands was found to catalyze effective oxidation of alkanes by hydrogen peroxide in acetonitrile at room temperature in the presence of pyrazine-2-carboxylic acid (P) as a cocatalyst. The primary reaction products were alkylhydroperoxides, which gradually decomposed to produce the corresponding ketones (aldehydes) and alcohols. Alkane activation was caused by the attack of hydroxyl radicals on a C-H alkane bond, which resulted in the formation of alkyl radicals. Hydroxyl radicals were generated in the rate-determining step of monomolecular decomposition of the iron diperoxo adduct with one P molecule. A kinetic model of the process that satisfactorily described the whole set of experimental data was suggested. The constants of supposed equilibria and the rate constant for the decomposition of the diperoxo complex of iron with P were estimated.
Identifiants
https://libra.unine.ch/handle/123456789/13337
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00