Voici les éléments 1 - 2 sur 2
Vignette d'image
Publication
Accès libre

Passively Q-Switched Thulium Microchip Laser

, Gaponenko, Maxim, Kuleshov, Nikolay, Südmeyer, Thomas

We present the first passively Q-switched thulium microchip laser. The diode-pumped laser incorporates a Tm:KYW gain medium and an InGaAs semiconductor saturable absorber mirror. The laser emits pulses with a duration of 2.4 ns at a repetition rate of 1.2 MHz with an average output power of 130 mW at a wavelength of 1905 nm. It operates in a fundamental TEM00 mode with M2 < 1.1. The Q-switched pulse train is very stable with pulse-to-pulse intensity fluctuations <10% and a timing jitter of < ± 50 ns. Our microchip laser appears well suited as a seed in pulsed 2-μm fiber amplifier systems for applications like material processing. In addition, we present new power scaling results for continuous-wave Tm-microchip lasers, achieving 1.6 W of output power in a fundamental TEM00 mode. The slope efficiency relative to the absorbed pump power is as high as 74%, and the optical-to-optical efficiency is 41%. A maximum output power of 2.6 W is achieved in a TEM01∗-doughnutlike transverse mode. In all the cases, no active cooling is applied to the gain medium.

Vignette d'image
Publication
Accès libre

Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power

, Gaponenko, Maxim, Kuleshov, Nikolay, Südmeyer, Thomas

We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM00 mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.