Voici les éléments 1 - 5 sur 5
  • Publication
    Accès libre
    Generation of 35-fs pulses from a Kerr lens mode-locked Yb:Lu2O3 thin-disk laser
    We investigate Kerr lens mode locking of Yb:Lu2O3 thin-disk laser oscillators operating in the sub-100-fs regime. Pulses as short as 35 fs were generated at an average output power of 1.6 W. These are the shortest pulses directly emitted from a thin-disk laser oscillator. The optical spectrum of the 35-fs pulses is almost 3 times broader than the corresponding emission band of the gain crystal. At slightly longer pulse duration of 49 fs, we achieve an average power of 4.5 W. In addition, 10.7 W are obtained in 88-fs pulses, which is twice higher than the previous power record for ultrafast thin-disk lasers generating pulses shorter than 100 fs. Our results prove that Kerr lens mode-locked Yb:Lu2O3 thin-disk lasers are a promising technology for further average power and pulse energy scaling of ultrafast high-power oscillators operating in the sub-100-fs regime.
  • Publication
    Accès libre
    Extreme ultraviolet light source at a megahertz repetition rate based on high-harmonic generation inside a mode-locked thin-disk laser oscillator
    Labaye, François
    ;
    ; ;
    Diebold, A
    ;
    ;
    Modsching, Norbert Paul
    ;
    ;
    Emaury, F
    ;
    Graumann, I.J
    ;
    Phillips, C.R
    ;
    Saraceno, C.J
    ;
    Kränkel, C
    ;
    Keller, Ursula
    ;
    We demonstrate a compact extreme ultraviolet (XUV) source based on high-harmonic generation (HHG) driven directly inside the cavity of a mode-locked thin-disk laser oscillator. The laser is directly diode-pumped at a power of only 51 W and operates at a wavelength of 1034 nm and a 17.35 MHz repetition rate. We drive HHG in a high-pressure xenon gas jet with an intracavity peak intensity of 2.8×1013  W/cm2 and 320 W of intracavity average power. Despite the high-pressure gas jet, the laser operates at high stability. We detect harmonics up to the 17th order (60.8 nm, 20.4 eV) and estimate a flux of 2.6×108  photons/s for the 11th harmonic (94 nm, 13.2 eV). Due to the power scalability of the thin-disk concept, this class of compact XUV sources has the potential to become a versatile tool for areas such as attosecond science, XUV spectroscopy, and high-resolution imaging.
  • Publication
    Accès libre
    Carrier-envelope offset frequency stabilization of a thin-disk laser oscillator operating in the strongly self-phase modulation broadened regime
    We demonstrate the carrier-envelope offset (CEO) frequency stabilization of a Kerr lens mode-locked Yb:Lu2O3 thin-disk laser oscillator operating in the strongly self-phase modulation (SPM) broadened regime. This novel approach allows overcoming the intrinsic gain bandwidth limit and is suited to support frequency combs from sub-100-fs pulse trains with very high output power. In this work, strong intra-oscillator SPM in the Kerr medium enables the optical spectrum of the oscillating pulse to exceed the bandwidth of the gain material Yb: Lu2O3 by a factor of two. This results in the direct generation of 50-fs pulses without the need for external pulse compression. The oscillator delivers an average power of 4.4 W at a repetition rate of 61 MHz. We investigated the cavity dynamics in this regime by characterizing the transfer function of the laser output power for pump power modulation, both in continuous-wave and mode-locked operations. The cavity dynamics in mode-locked operation limit the CEO modulation bandwidth to ~10 kHz. This value is sufficient to achieve a tight phase-lock of the CEO beat via active feedback to the pump current and yields a residual in-loop integrated CEO phase noise of 197 mrad integrated from 1 Hz to 1 MHz.
  • Publication
    Accès libre
    Kerr lens mode-locked Yb:CALGO thin-disk laser
    ; ;
    Labaye, François
    ;
    ;
    Graumann, Ivan J
    ;
    Diebold, Andreas
    ;
    Emaury, Florian
    ;
    ;
    We demonstrate the first Kerr lens mode-locked Yb:CaGdAlO4 (Yb:CALGO) thin-disk laser oscillator. It generates pulses with a duration of 30 fs at a central wavelength of 1048 nm and a repetition rate of 124 MHz. The laser emits the shortest pulses generated by a thin-disk laser oscillator, equal to the shortest pulse duration obtained by Yb-doped bulk oscillators. The average output power is currently limited to 150 mW by the low gain and limited disk quality. We expect that more suitable Yb:CALGO disks will enable substantially higher power levels with similar pulse durations.
  • Publication
    Accès libre
    Sub-100-fs Kerr lens mode-locked Yb:Lu2O3 thin-disk laser oscillator operating at 21 W average power
    We investigate power-scaling of a Kerr lens mode-locked (KLM) Yb:Lu2O3 thin-disk laser (TDL) oscillator operating in the sub-100-fs pulse duration regime. Employing a scheme with higher round-trip gain by increasing the number of passes through the thin-disk gain element, we increase the average power by a factor of two and the optical-to-optical efficiency by a factor of almost three compared to our previous sub-100-fs mode-locking results. The oscillator generates pulses with a duration of 95 fs at 21.1 W average power and 47.9 MHz repetition rate. We discuss the cavity design for continuous-wave and mode-locked operation and the estimation of the focal length of the Kerr lens. Unlike to usual KLM TDL oscillators, an operation at the edge of the stability zone in continuous-wave operation is not required. This work shows that KLM TDL oscillators based on the gain material Yb:Lu2O3 are an excellent choice for power-scaling of laser oscillators in the sub-100-fs regime, and we expect that such lasers will soon operate at power levels in excess of hundred watts.